Initial Study and Mitigated Negative Declaration

Atlas Road Industrial Building (Steelscape) Project

City of Richmond File No. PLN-14-119

SCH # 2015042073

Planning and Building Services Department
City of Richmond
450 Civic Center Plaza
Richmond, CA 94804
City of Richmond

June 2015
TABLE OF CONTENTS

A. SUMMARY OF PROJECT INFORMATION ... 1
B. ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED 11
C. DETERMINATION .. 11
D. EVALUATION OF ENVIRONMENTAL IMPACTS ... 12
 I. AESTHETICS .. 13
 II. AGRICULTURE AND FOREST RESOURCES ... 15
 III. AIR QUALITY: .. 17
 IV. BIOLOGICAL RESOURCES ... 31
 V. CULTURAL RESOURCES ... 33
 VI. GEOLOGY AND SOILS .. 36
VII. GREENHOUSE GAS EMISSIONS ... 40
VIII. HAZARDS AND HAZARDOUS MATERIALS .. 53
IX. HYDROLOGY AND WATER QUALITY .. 56
X. LAND USE AND PLANNING ... 61
XI. MINERAL RESOURCES .. 62
XII. NOISE ... 63
XIII. POPULATION AND HOUSING ... 70
XIV. PUBLIC SERVICES .. 71
XV. RECREATION ... 74
XVI. TRANSPORTATION AND TRAFFIC ... 75
XVII. UTILITIES AND SERVICE SYSTEMS ... 85
XVIII. MANDATORY FINDINGS OF SIGNIFICANCE ... 90
E. REPORT PREPARERS .. 92
F. REFERENCES .. 93

COMMENTS AND RESPONSES DOCUMENT
A. SUMMARY OF PROJECT INFORMATION

1. Project Title: Atlas Industrial Building (Steelscape) Project

2. Lead Agency Name and Address:

 City of Richmond
 Planning and Building Services Department
 450 Civic Center Plaza
 Richmond, CA 94804

3. Contact Person and Phone Number:

 Jonelyn Whales,
 Senior Planner
 Planning Department
 City of Richmond
 (510) 620-6785

4. Project Location:

 The proposed project is located on a 42.14-acre site at 2995 Atlas Road, at the corner of Atlas Road and Giant Road in the north part of the City of Richmond, to the west of Interstate 80, Contra Costa County, California. The Assessor’s Parcel Number is 405-590-008 (see Figure 1).

5. Project Applicant:

 Alan Hersh
 Senior Vice President
 LDK Ventures
 3140 Peacekeeper Way
 McClellan, CA 95652
 (916) 965-7100

6. General Plan Designation: Business Light Industrial

7. Zoning: M-3, Heavy Industrial District
Figure 1
Location Map
Source: Google Maps, 2014
8. Description of Project:

Project Overview

Requested Approvals

The applicant is requesting the City of Richmond’s approval, through its Design Review Board, to construct a one-story, 707,820 square-feet building on a forty-one acre site, along with 159,000 square feet of outdoor loading areas and 427 parking spaces. No changes are proposed to the site’s General Plan or zoning designations.

Project Location and Site Conditions

The proposed project is located on a 42.14-acre site at 2995 Atlas Road, at the corner of Atlas Road and Giant Road in the north part of the City of Richmond, to the west of Interstate 80, Contra Costa County, California (see Figure 1).

The site previously included two manufacturing/warehouse buildings, and one 8,800-square foot office building, totaling approximately 563,500 square feet. The plant also included infrastructure, facility support areas and paved areas. A steel galvanizing operation formerly existed in the 275,500 square-foot, northern building (the Galvanizing Line Building), which was constructed in 1965/1966 by Bethlehem Steel. The second building approximately 279,200 square feet (constructed in 1990/1991) was used as a coil coating, paint line operation (Paint Line Building). Therefore, this Initial Study (IS) evaluates the impacts of the construction and operation of the proposed new building and associated facilities.

Remediation of contaminated soils on the site is ongoing and scheduled for completion in the third quarter of 2015, under a separate permit from the City and under review of the Department of California Regional Water Quality Control Board, San Francisco Bay Region. It is also expected that the remedial activities would be completed in the third quarter of 2015.

Proposed Structures and Uses

The project involves construction of a single large logistics building and associated parking, loading, and landscaped areas on the cleared site (See Figure 2, Site Plan). The proposed new building would include approximately 40,000 square feet of office space and 667,820 square feet of warehouse space. The footprint of the new building would be similar as that of the previous structures and hardscape. The height of the building proposed would vary from 40 feet to 43 feet, and its length would be 1,506 feet.

The project would be constructed with painted concrete tilt-up panels, with painted entrance canopies, clear anodized aluminum storefront tempered clear glass, and aluminum doors (See Figures 3 - 5.)

The building would be developed as a warehouse/light manufacturing speculative facility with all interior improvements to be implemented by tenants to suit their needs. Future
uses of the building could include warehousing, warehousing distribution, light assembly, light manufacturing, and food manufacturing. Tenant improvements would be subject to commercial building improvement permits from the City. Specific interior improvements and uses are not addressed in this IS because they are not yet known.

Parking
A total of 427 vehicle parking spaces and 105 bicycle stalls are proposed for employees. Drive aisles on the site are proposed to be 25 and 30 feet wide for the employee parking area and the truck access area to be located around the building. Access to and from the site would be via an existing access driveway off Atlas Road. No new driveways are proposed (see Figure 2).

Lighting
Uniform on-site lighting is proposed that would illuminate all on-site walkways and parking areas to a minimum of one foot-candle average per California Green Building Codes. No off-site (street) improvements are proposed for the project including changes in street lighting.

Landscaping and Stormwater Detention
Thirty-nine percent of the site would be covered by the building, not including parking, (707,820 square feet) with 9% of the site (160,000 square feet) as porous/permeable material. The remainder would be impermeable material (roads, parking, etc.) at 52% (957,751 square feet) of the site.

The project proposes landscaping with various trees, shrubs, grasses, and wildflowers. In accordance with Section 15.04.850.050 of the Richmond Municipal Code, one tree would be included per four parking spaces and integrated throughout the parking lot. A total of 127 trees would be planted in the parking area to comply with this standard.

The landscape design proposes drought-tolerant and locally adapted plants to meet the Cal Green requirements to minimize outdoor water use. The design would also assist in filtering on-site storm water before it leaves the site. The system would also utilize weather sensing irrigation controllers that automatically adjust water usage based on local environmental conditions.

Trail Easement and Construction
The project would include the dedication of a trail easement and construction of the multi-purpose trail by the applicant, to be operated and maintained by the East Bay Regional Park District. Fencing is proposed to separate the project facilities from the proposed trail. The chain link fence would be eight feet high, and black vinyl coated for aesthetic and security purposes, and would be located at least four feet away from the trail. The project proposes to landscape the project side of the fence to minimize views of the warehouse project from the trail. Most portions of the fence would be at least fifteen feet from the project’s paved areas with many areas provided with up to thirty-five feet of landscaped buffer.
Figure 2
Conceptual Site Plan

Source: LDK Ventures
Figure 3
Proposed South Exterior Elevations

Source: Ware Malcomb
Figure 4
Proposed North Exterior Elevations

Source: Ware Malcomb
Figure 5
Proposed East and West Exterior Elevations

Source: Ware Malcomb
Project Construction Schedule and Activities

Project construction is proposed to begin the first full construction season after project approval would be completed in the following phases:

- Construction pre-construction activities, such as fencing, water pollution control, mobilizing of equipment;
- Excavation and drilling of piles;
- Construction of concrete masonry unit walls and placement of concrete tilt-up walls;
- Construction of ramps, on-site roads and parking lot areas, fencing, and landscaping;
- Construction of multi-purpose trail.

Project Construction Workers and Equipment

Approximately 25 to 50 construction workers would be on the project site at one time. For the concrete phase of the construction, on average there would be 25 to 30 workers, except on concrete pour days during which there would be an additional 15 to 20 workers. For the steel phase of the construction, there would be 8 to 12 workers; and there would be 15 to 18 workers during construction of the roof structure. In the latter part of the construction, there would be 10 to 35 workers per day for the finish trades phase of the work.

Construction equipment would include equipment for earth moving and compaction, concrete mix trucks, cranes for concrete panel lifting, boom trucks, and forklifts.

9. Surrounding Land Uses:

The project site is bounded to the north and west by the East Bay Regional Park District's Point Pinole Regional Shoreline Park and Union Pacific Railroad tracks (followed by San Pablo Bay). Adjacent and nearby development includes commercial office, research and warehouse land uses to the west, south and east (i.e., Restoration Hardware, Bio-Rad Laboratories, United Parcel Service, and Whole Foods). Immediately north of the project site is the Point Pinole Regional Shoreline recreational use area. The nearest existing residential land uses are about 1300 feet to the south, (i.e., single-family residential developments adjacent to and south of Atlas Road and Giant Highway). No schools, convalescent homes or hospitals are located within 1,000 feet of the project site.

The Pinole Point Business Park is an 80-acre site adjacent to the project site to the south on Giant Highway, northeast of Atlas Road. This four-building warehouse and manufacturing project has been approved by the City and has a total planned area of approximately 637,000 square feet. One of the buildings has been constructed and is fully occupied by Whole Foods Market.

10. Other Public Agencies with Approvals or Permits:
The project may require permits or approvals from the California Regional Water Quality Control Board, San Francisco Bay Region.

11. Project Size: The project site is 42.14 acres.

12. Project Density: The Floor Area Ratio of the project is proposed to be 0.385.

13. The following section addresses the potential environmental effects of the project.
B. ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project as indicated by the checklists and responses contained on the following pages:

☐ Aesthetics ☑ Agriculture & Forest Resources ☑ Air Quality
☐ Biological Resources ☑ Cultural Resources ☑ Geology & Soils
☒ Greenhouse Gas Emissions ☑ Hazards & Hazardous Materials ☑ Hydrology & Water Quality
☐ Land Use & Planning ☐ Mineral Resources ☐ Noise
☐ Population & Housing ☐ Public Services ☐ Recreation
☒ Transportation & Traffic ☑ Utilities & Services Systems ☑ Mandatory Findings of Significance

C. DETERMINATION:

On the basis of this initial evaluation:

☐ I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

☒ I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

☐ I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

☐ I find that the proposed project MAY have a “potentially significant impact” or “potentially significant unless mitigated” impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

☐ I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project; nothing further is required.

Signature
Jonelyn Whales, Senior Planner
Printed name

Date

Initial Study/Mitigated Negative Declaration
Steelscape Project
D. EVALUATION OF ENVIRONMENTAL IMPACTS

Evaluation of Environmental Impacts

The following checklist is formatted consistent with CEQA Guidelines, Appendix G. A “no impact” response indicates that the project would not result in an environmental impact in a particular area of interest, either because the resource is not present, or the project does not have the potential to cause an effect on the resource.

A “less than significant” response indicates that, while there may be potential for an environmental impact, the significance of the impact would not exceed established thresholds and/or that there are standard procedures or regulations in place that would apply to the project and hence no mitigation is required.

Responses that indicated that the impact of the project would be “less than significant with mitigation” mean that, although there is the potential for a significant impact, feasible mitigation measures would become conditions of approval for the project if it receives approval by the City Planning Commission.

A “potentially significant impact” response indicates that the impact would exceed established thresholds and that the impact could not be avoided by utilizing standard operating procedures and regulations, program requirements, or design features incorporated into the project or that additional analysis is required in an EIR.

Public comments on this Initial Study should focus on the accuracy and completeness of the analysis contained herein.
I. **AESTHETICS** – Would the project:

a) Have a substantial adverse effect on a scenic vista?
 ![Impact Level]

b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?
 ![Impact Level]

c) Substantially degrade the existing visual character or quality of the site and its surroundings?
 ![Impact Level]

d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?
 ![Impact Level]

Background:

Prior to the demolition of the buildings, the visual character of the site was that of two very large blue metal buildings with white roofs. These buildings have been recently removed, resulting in more open views across the site. Point Pinole Regional Shoreline park open space is to the north and west while other industrial uses exist to the east and south side of the site. Views to the south are of existing Point Pinole Business Park industrial buildings. Views westward include railroad tracks and trees associated with Point Pinole Regional Park. Views to the north and east are of other industrial and commercial buildings and some multi-family residential structures in the Hilltop area.

Discussion:

a. Scenic Vista - Less than Significant Impact. The project site is relatively flat and is at a lower elevation than industrial sites to the south and west. It is located in an area with existing two and three-story industrial and warehouse buildings. The proposed building would be viewable from adjacent buildings and roadways and the existing residential buildings that previously viewed the large blue buildings that were formerly on the site. The parcel and surrounding area are zoned Industrial and the height of the proposed building (varying from 40 feet to 43 feet) would be similar to surrounding structures and while higher than others, would be located at a lower elevation at the bottom of the slope and generally not visible from the north and public spaces. Building elevations are shown on Figures 3-5. Landscaping would be added to the parcel along Atlas Road and within the parking areas.
As discussed in the project description, the project would include the dedication of a multi-purpose trail easement for construction of a trail to be maintained by the East Bay Regional Park District. Fencing is proposed to separate the project facilities from the trail as part of this project. The proposed fence would be eight feet high, and black vinyl coated for aesthetic and security purposes, and would be located at least four feet from the trail. The project includes landscaping of the project side of the fence to minimize views of the warehouse project from the trail. Most portions of the fence would be at least fifteen feet from the project’s paved areas with many areas provided with up to thirty-five feet of landscaped buffer. The landscaping would include a combination of trees, shrubs, groundcovers, and perennials. A landscaping plan has been submitted to the City for review and approval. The view of the site from the nearby Point Pinole Regional Shoreline Park and trail would change from an open area where the previous buildings had been demolished to a view of the new warehouse structure. The proposed new fencing and landscaping would block views of the site from the trail.

The proposed building would replace an open area with parking lots (site of the recently demolished former industrial buildings) with a new large building and would not have an adverse effect on any scenic vistas, due to the project’s location at the bottom of the slope and compatibility in scale and design with existing and proposed industrial uses adjacent to the project site. The proposed building would not block any scenic vistas. Therefore this impact would be less than significant.

b. Scenic Highway - No Impact. The project does not contain any scenic trees, rock outcroppings or historic buildings. The site is not in view from any state highways or designated scenic routes (State of California, Department of Transportation, and Scenic Highways Program, accessed December 18, 2014.) Therefore, there are no significant impacts on scenic resources.

c. Visual Quality – Less Than Significant Impact. The property is located on a parcel that previously contained industrial buildings, in an area with existing industrial structures. The proposed development would continue this type of industrial development. The proposed project would replace an open paved area that formerly included two large buildings with one warehouse building in an area of existing warehouses. The impact on the visual character of the site would be less than significant.

d. Light and Glare – Less Than Significant Impact. The project would include lighting in the parking areas, landscaped area, street signage and building lighting. Lighting would be very similar to that previously existing on the site. The light would not adversely affect day or nighttime views in the area. However, proposed lighting would be similar to existing and surrounding industrial development. The project would comply with all applicable City standards for lighting. The impacts of light and glare would be less than significant.
II. AGRICULTURE AND FOREST RESOURCES:

Would the project:

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program on the California Resources Agency, to non-agricultural use?

b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?

c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code Section 12220(g)), timberland (as defined by Public Resources Code Section 4526), or timberland zone Timberland Production (as defined by Government Code Section 51104(g))?

d) Result in the loss of forest land or conversion of forest land to non-forest use?

e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use?

Background:

The project site is comprised of land classified as “urban and built up land” by the State of California. No Prime, Unique, or Farmlands of Statewide Importance are mapped as existing on the site (California Farmland Mapping Program, California Important Farmland Finder, accessed July 14, 2014). The project site is not under a Williamson Act contract, since no agricultural land exists on the site. In addition, no forest resources exist on the site, which is composed primarily of paving and existing buildings.
Discussion:

a and b. Farmland, Williamson Act - *No Impact.* The project site is located in an urbanized area consisting of industrial and commercial uses. The project would have no impact on conversion of Prime Farmland, Unique Farmland, or Farmland of Statewide Importance, as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program because no such designated lands are mapped on the site. The Project would result in the continuance of an industrial use in an industrially zoned area.

c, d. Forest Lands – *No Impact.* The project would not affect forest lands or forest zoning because no such lands or zoning exist or are proposed on the site.

e. Conversion of Farmland – *No Impact.* The proposed project would not involve other changes in the existing environment that could result in conversion of Farmland to a non-agricultural use. No significant impacts are anticipated with regard to Agricultural Resources, since there is currently no Farmland, as defined by the California Resources Agency, on the subject parcel, nor is it zoned for agricultural use, nor protected under a California Land Conservation (Williamson Act) contract.
III. AIR QUALITY:

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

a) Conflict with or obstruct implementation of the applicable air quality plan? □ □ □ □

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation? □ □ □ □

c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)? □ □ □ □

d) Expose sensitive receptors to substantial pollutant concentrations? □ □ □ □

e) Create objectionable odors affecting a substantial number of people? □ □ □ □

Background:

Meteorological Effects on Air Quality

The Project Site lies in the Northern Alameda/Western Contra Costa climatological sub-region of the Bay Area. The westerly marine air flow through the Golden Gate is predominant in this sub-region, but the Oakland-Berkeley Hills cause it to slow and divert to the north and to the south as it approaches the East Bay shore. Thus, Richmond being northeast of the Golden Gate is in a predominant southerly flow.

At the Point San Pablo meteorological station, located west-northwest of downtown Richmond, the prevailing direction is south southwesterly with over 50 percent of the winds coming from the south through southwest sector. The average wind speed is 11 miles per hour (mph). On average, Richmond's maximum summer temperatures are in the low 70's
with minima averaging in the mid-50s. In winter maxima range from the high 50’s to low 60’s and minima reach the low to mid-40s. Precipitation averages about 22 inches annually.

The potential for air pollutants to concentrate in areas close to the Bay shore (which includes the project site) is low due to frequent good ventilation and less influx of pollutants from upwind sources. Light winds, however, mainly during the night and early morning, may promote occasional elevated pollutant levels (Bay Area Air Quality Management District, Bay Area Climatology, accessed October 4, 2010.)

Sensitive Receptors

People that are more susceptible to the effects of air pollution within the general population, deemed “sensitive receptors”, include children, the elderly, and those that suffer from certain illnesses or disabilities. Therefore, schools, convalescent homes, and hospitals are considered to be typical locations of sensitive receptors. Residential areas are also considered sensitive receptors because people (including children, the elderly and the sick) usually stay home for extended periods of time, which results in greater exposure to localized air pollutants.

The Bay Area Air Quality Management District (BAAQMD) considers the relevant zone of influence for an assessment of air quality health risks in a CEQA study to be within 1,000 feet of a project site. Adjacent and nearby land uses to the Project site include commercial office, research and warehouse land uses to the west, south and east (i.e., Restoration Hardware, Bio-Rad Laboratories, United Parcel Service, and Whole Foods). Immediately north of the project site is the Point Pinole Regional Shoreline recreational use. The nearest existing residential land uses are more than 1000 feet to the south (i.e., single-family residential developments adjacent to and south of Atlas Road and Giant Highway). No schools, convalescent homes or hospitals are located within 1,000 feet of the project site.

Existing Air Quality

The BAAQMD monitors and regulates air quality in the Bay Area pursuant to the Federal Clean Air Act (CAA) and the California Clean Air Act (CCAA). The BAAQMD adopts and enforces controls on stationary sources of air pollutants through its permit and inspection programs. Other BAAQMD responsibilities include preparation of regional clean air plans and responding to citizen air quality complaints. The BAAQMD has also authored the *CEQA Air Quality Guidelines* to assist lead agencies in evaluating air quality impacts of projects and plans proposed in the Bay Area.

The Bay Area Air Quality Management District (BAAQMD) adopted its 2010 Bay Area Clean Air Plan (CAP) in accordance with the requirements of the California Clean Air Act (CCAA) to implement all feasible measures to reduce ozone; provide a control strategy to reduce ozone, particulate matter, air toxics (TACs), and GHG emissions in a single, integrated plan; and establish emission control measures to be adopted or implemented in the 2010 through 2012 timeframe. The primary goals of the 2010 Bay Area CAP are to:
• Attain/maintain air quality standards;

• Reduce population exposure to air pollutants and protect public health in the Bay Area; and

• Reduce GHG emissions and protect the climate.

The BAAQMD operates a set of regional ambient air quality monitoring stations where readings are taken of the six criteria pollutants considered in this Initial Study. Currently, the criteria pollutants of most concern in the Bay Area are ozone (O₃), PM₁₀ and PM₂.₅.

The monitoring station closest to the Project site is in San Pablo approximately 2.5 miles south of the site; here levels of O₃, PM₁₀, PM₂.₅, CO, NO₂, and SO₂ are recorded.

Table III-1 summarizes the most recent three years of data from the San Pablo air monitoring station. The federal 24-hour PM₂.₅ standard was exceeded twice in 2013; the State 24-hour PM₁₀ standard was exceeded once in 2011. No other State or federal air quality standards were exceeded during the three-year period.

The Bay Area is currently designated “nonattainment” for state and national (1-hour and 8-hour) ozone standards, for the state PM₁₀ standards, and for state and national (annual average and 24-hour) PM₂.₅ standards. The Bay Area is designated “attainment” or “unclassifiable” with respect to the other ambient air quality standards.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Standard</th>
<th>Days Standard Exceeded</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>State 1–Hour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ozone</td>
<td>Federal 8–Hour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ozone</td>
<td>State 8–Hour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Federal 24–Hour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>State 24–Hour</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Federal 24–Hour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>State/Federal 8–Hour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>State 1–Hour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>Federal 1–Hour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>State 24-Hour</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Air Pollutant Emissions Significance Thresholds

The Project would have a significant environmental impact if it would exceed the following BAAQMD construction and/or operational pollutant emission thresholds for exhaust emissions and/or if appropriate air pollutant control measures are not implemented to control fugitive dust. The BAAQMD CEQA Air Quality Guidelines recommend that the cumulative air quality effects of criteria air pollutants also be addressed by comparison to the same daily and annual emission thresholds, which were developed to identify cumulatively considerable contributions to a significant regional air quality problems.

Local Pollutant Concentrations

The Project would have a significant operational environmental impact if CO emissions from the motor vehicle traffic it generates or from the cumulative traffic congestion it causes would exceed the ambient air quality standards of 9.0 ppm (8-hour average) or 20.0 ppm (1-hour average).

a, b, and c. Air Quality Planning, Standards, Non-Attainment - Less Than Significant With Mitigation. Compliance with BAAQMD-approved CEQA thresholds of significance are the conditions for determining that a project would be consistent with all adopted control measures and would not interfere with the attainment of CAP goals. As the analysis below demonstrates, the Project would not have significant and unavoidable air quality impacts because it meets all BAAQMD CEQA thresholds after the implementation of mitigation measures identified in this Initial Study.

The air quality analyses addressing these checklist items were performed using the methodologies and criteria recommended by the Bay Area Air Quality Management District (BAAQMD) in their CEQA Air Quality Guidelines (dated June 2010, updated in May 2011, and revised in May 2012). The air pollutants evaluated are: carbon monoxide (CO), reactive organic compounds (ROG) and nitrogen dioxide (NO2) (both being precursors to ozone formation), sulfur dioxide (SO2), particulate matter equal to or less than 10 micrometers (coarse particulates or PM10), and particulate matter equal to or less than 2.5 micrometers (fine particulates or PM2.5). Greenhouse gas (GHG) emissions are addressed in Section VII.

1 The Air District’s June 2010 adopted thresholds of significance were challenged in a lawsuit. Although the BAAQMD’s adoption of significance thresholds for air quality analysis has been subject to judicial actions, the City of Richmond has determined that BAAQMD’s Revised Draft Options and Justification Report (October 2009) provide substantial evidence to support the BAAQMD recommended thresholds. Therefore, the City of Richmond has determined the BAAQMD recommended thresholds are appropriate for use in this analysis.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Construction Average Daily (lbs./day)</th>
<th>Operational Average Daily (lbs./day)</th>
<th>Maximum Annual (tpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive Organic Gases (ROG)</td>
<td>54</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>Oxides of Nitrogen (NO\textsubscript{x})</td>
<td>54</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>Coarse Inhalable Particulate Matter (PM\textsubscript{10})</td>
<td>82 (exhaust)</td>
<td>82</td>
<td>15</td>
</tr>
<tr>
<td>Fine Inhalable Particulate Matter (PM\textsubscript{2.5})</td>
<td>54 (exhaust)</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>PM\textsubscript{10}/PM\textsubscript{2.5} Fugitive Dust</td>
<td>BMPsa</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes:
BMPs = Best Management Practices
N/A = Not Applicable
a If BAAQMD Best Management Practices (BMPs) for fugitive dust control are implemented during construction, the impacts of such residual emissions are considered to be less than significant.

Source: Bay Area Air Quality Management District, 2011 May (Revised), California Environmental Quality Act Air Quality Guidelines.

Project Construction-Related Impacts

The Project would construct a 707,000 square-foot warehouse/distribution center on a 42-acre site at 2995 Atlas Road in the Pinole Point Business Park. The site was previously occupied by a vacant 350,000 square-foot steel fabrication facility that would be demolished prior to project construction.

Construction activities are expected to commence in 2015. Construction of the proposed warehouse/distribution center is expected to be complete in 2016 with the facility fully operational by sometime in 2017 at the latest.

Project construction would generate short-term emissions of criteria pollutants, including fugitive dust, equipment/truck exhaust emissions and volatile organic compounds (a large fraction of which would be chemical precursors, ROG, to ozone formation) from architectural coatings used in the building finishing phases. The BAAQMD CEQA Air Quality Guidelines recommend quantification of construction-related equipment emissions and ROG, and their comparisons to established CEQA significance...
thresholds. The CalEEMod (California Emissions Estimator Model, Version 2013.2.2) was used to quantify these construction-related emissions (see Appendix AQ for emissions estimate details and model input assumptions).

Table III-2 shows the estimated Project construction emissions and their comparisons to the significance thresholds. The construction phases would be sequential with some overlap of adjacent phases. Even allowing for such phase overlap, all construction-related emissions would be below the BAAQMD significance thresholds with the exception of ROG emitted from coating solvent evaporation during the building finishing phase as currently planned.

An important assumption affecting the construction equipment emissions estimates is the inclusion of a commitment by the Project Sponsor to use only late-model equipment having US Environmental Protection Agency (EPA) Tier 3 and Tier 4I (Interim) rated engines, the cleanest currently available. If earlier model equipment were substituted in substantial numbers for Project construction, pollutant emissions would be larger than the estimates shown below and their maintenance below the significance thresholds could not be guaranteed.

TABLE III-2

PROJECT CONSTRUCTION CRITERIA POLLUTANT EMISSIONS

(pounds per day)

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>ROG</th>
<th>NOx</th>
<th>PM(_{10})</th>
<th>PM(_{2.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmitigated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Preparation - Utilities</td>
<td>0.7</td>
<td>14.2</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Site Preparation - Grading</td>
<td>1.5</td>
<td>24.9</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Site Preparation - Paving</td>
<td>0.6</td>
<td>9.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Building - Concrete</td>
<td>0.7</td>
<td>10.9</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Building - Steel</td>
<td>0.3</td>
<td>5.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Building - Roof</td>
<td>1.2</td>
<td>8.0</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Building - Finishing</td>
<td>167.5</td>
<td>2.6</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Significance Thresholds</td>
<td>54</td>
<td>54</td>
<td>82</td>
<td>54</td>
</tr>
<tr>
<td>Significant Impact?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mitigated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building - Finishing</td>
<td><54</td>
<td>2.6</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Significance Thresholds</td>
<td>54</td>
<td>54</td>
<td>82</td>
<td>54</td>
</tr>
<tr>
<td>Significant Impact?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

BAAQMD regulations applicable to Project construction relate to controls on the fugitive dust generated by construction activity, restrictions on diesel-powered equipment (e.g., electrical generators, pumps, compressors, backhoes, cranes, etc.) and to ROG emissions from architectural coatings and paving materials.

BAAQMD’s *CEQA Air Quality Guidelines* require a number of Construction Mitigation Measures to control fugitive dust and exhaust emissions. Though the Project
construction emission estimates indicate that equipment emissions would be below the BAAQMD significance thresholds with or without the implementation of these measures, the following measures must be implemented by the Project construction contractor:

BAAQMD Required Dust Control Measures: The construction contractor shall reduce construction-related air pollutant emissions by implementing BAAQMD’s basic fugitive dust control measures, including:

- All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- All haul trucks transporting soil, sand, or other loose material off site shall be covered.
- All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- All vehicle speeds on unpaved roads shall be limited to 15 miles per hour.
- All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- A publically visible sign shall be posted with the telephone number and person to contact at the Lead Agency regarding dust complaints. This person shall respond and take corrective action with 48 hours. The Air District’s phone number shall also be visible to ensure compliance with applicable regulations.

BAAQMD Required Basic Exhaust Emissions Reduction Measures. The construction contractor shall implement the following measures during construction to reduce construction-related exhaust emissions:

- Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to five minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations). Clear signage shall be provided for construction workers at all access points.
- All construction equipment shall be maintained and properly tuned in accordance with manufacturer’s specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.

Emissions of volatile organic compounds (VOC) from the use of architectural coatings are regulated by BAAQMD Regulation 8: Organic Compounds, Rule 3: Architectural Coatings (Rule 8-3). Rule 8-3 in its current form went into effect on January 1, 2011 and is expected to reduce Bay Area VOC emissions by 32 percent over time. It requires any development
project to use paints and solvents with a VOC content of 100 grams per liter or less for interior surfaces and 150 grams per liter or less for exterior surfaces.

According to Project data received, the “Building-Finishing” phase would occur during the last 7 weeks of the 36-week building construction phase. Thus, architectural coatings would be applied during about 44 workdays. According to default assumptions of the CalEEMod model, a 707,000 square foot warehouse/distribution center would have about 1.4 million sq. ft. of interior and exterior surface to cover. Even if the paint meets the BAAQMD regulation requirements (i.e., VOC content of 100 grams per liter for interior surfaces and 150 grams per liter for exterior surfaces), the daily VOC emissions would average about 168 lbs., which is more than 3 times the 54 lbs./day BAAQMD threshold. This potentially significant impact would be reduced to a less-than-significant level by implementation of the following mitigation measure:

Mitigation Measure III-1: Project VOC emissions from architectural coating application shall be reduced to 54 lbs./day or less through the implementation of any of the following measures or some combination thereof as required:

- Stretch out the Building-Finishing phase to include more work days for architectural coating application;
- Use architectural coatings with a lower VOC content than BAAQMD regulations require; and/or
- Use building components that have had their surfaces factory-finished and so would reduce the need for on-site painting or finishing with VOC-containing materials.

Prior to the beginning of Project construction, final plans shall be submitted for City approvals that demonstrate attainment of the BAAQMD 54 lbs./day limit on VOC emissions during construction.

Project Operational Impacts

Air Pollutant Emissions

The CalEEMod was also used to estimate emissions that would be associated with motor vehicles, energy use (i.e., space and water heating, etc.) and other sources (i.e., maintenance emissions, etc.) expected to occur after the Project is complete. (Emission model details and input assumptions are provided in the Appendix).

Project estimated operational daily and annual emissions are presented in Tables III-3 and III-4 and are compared to BAAQMD’s significance thresholds. Project operational emissions would be below the BAAQMD’s significance thresholds and would be less than significant for CEQA purposes.
TABLE III-3

PROJECT DAILY OPERATIONAL CRITERIA POLLUTANT EMISSIONS
(pounds per day)

<table>
<thead>
<tr>
<th>Emission Category</th>
<th>ROG</th>
<th>NOx</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>17.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Energy</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mobile</td>
<td>7.5</td>
<td>18.1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Total Project</td>
<td>24.7</td>
<td>18.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Significance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thresholds</td>
<td>54</td>
<td>54</td>
<td>82</td>
<td>54</td>
</tr>
<tr>
<td>Significant Impact?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

TABLE III-4

PROJECT ANNUAL OPERATIONAL CRITERIA POLLUTANT EMISSIONS
(tons per year)

<table>
<thead>
<tr>
<th>Emission Category</th>
<th>ROG</th>
<th>NOx</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>3.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Energy</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mobile</td>
<td>1.2</td>
<td>3.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Project</td>
<td>4.4</td>
<td>3.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Significance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thresholds</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Significant Impact?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Cumulative Emission Impacts

Since Tables III-2 through III-4 show that Project-related emissions would be below the BAAQMD significance thresholds (for construction ROG emissions, with implementation of Mitigation Measure III-1), the Project would not make cumulatively considerable contributions to the Bay Area’s regional problems with ozone or particulate matter. Thus, cumulative emission impacts would be less than significant.

Carbon Monoxide Concentrations

The BAAQMD has identified the following screening criteria for determining whether a project’s motor vehicle CO emissions would likely cause ambient air quality standards to be exceeded:

- The Project is consistent with an applicable congestion management program established by the County Congestion Management Agency for designated roads or highways, the regional transportation plan, and local congestion management agency plans.
• The Project traffic would increase traffic volumes at affected intersections to more than 44,000 vehicles per day.

• The Project traffic would increase traffic volumes at affected intersections to more than 24,000 vehicles per day where vertical and/or horizontal mixing is substantially limited (e.g., tunnel, parking garage, bridge underpass, natural or urban street canyon, below-grade roadway).

The additional traffic the Project generates would not have substantial effects on traffic flow locally or regionally and would not exceed either of the quantitative traffic volume thresholds specified above. Therefore, the Project’s operational CO impacts would be less than significant.

d. Sensitive Receptors - Less Than Significant Impact. The air quality analyses for this checklist item uses the methodologies and criteria recommended by the BAAQMD CEQA Air Quality Guidelines to address health risks and hazards from exposures to Toxic Air Contaminants (TACs), especially to the TAC diesel particulate matter (DPM).

Toxic Air Contaminants Significance

Project-Level Risks and Hazards

Project construction-related or operational emissions of TACs or PM$_{2.5}$ that impact sensitive receptors within 1,000 feet of the project site and exceed any of the thresholds listed below are considered significant:

• An excess cancer risk level of more than 10 in one million, or a non-cancer (i.e. chronic or acute) hazard index greater than 1.0.

• An incremental increase of greater than 0.3 micrograms per cubic meter (µg/m3) for annual average PM$_{2.5}$ concentrations.

Cumulative Risks and Hazards

Cumulative impacts include the combined effects of either construction-related or operational project TACs and PM$_{2.5}$ sources plus TAC and PM$_{2.5}$ impacts from all freeways, state highways and high volume roadways (i.e., the latter defined as having traffic volumes of 10,000 vehicles or more per day or 1,000 trucks per day), plus TAC and PM$_{2.5}$ impacts from all BAAQMD-permitted stationary sources within 1,000 feet of the project site. TAC or PM$_{2.5}$ combined impacts to sensitive receptors within 1,000 feet of the project site that exceed any of the thresholds listed below are considered cumulatively significant:

• An excess cancer risk levels of more than 100 in one million or a chronic non-cancer hazard index (from all local sources) greater than 10.0.

• An incremental increase of greater than 0.8 µg/m3 for annual average PM$_{2.5}$ concentrations.
Cancer Risk
Cancer risk is the lifetime probability of developing cancer from exposure to carcinogenic substances. Following HRA guidelines established by California Office of Environmental Health Hazard Assessment (OEHHA) and the BAAQMD in Recommended Methods for Screening and Modeling Local Risks and Hazards, incremental cancer risks were calculated by applying established toxicity factors to modeled TAC concentrations (see Appendix AQ for details).

Project Construction-Related Impacts
There are no existing senstive receptors within 1000 feet of the project site. Thus, the cancer risk due to Project construction activities would be less than significant.

Operational Impacts
The maximum cancer risks to residential receptors along Atlas Road from the Project trucks using the roadway as the only access to the project site would be about 5.9 per million. Thus, the health impacts from Project operations would be below the BAAQMD threshold of 10 per million and less than significant.

Non-Cancer Health Hazard
Chronic adverse health impacts unrelated to cancer are measured against a hazard index (HI), which is defined as the ratio of the Project’s incremental TAC exposure concentration to a published reference exposure level (REL) as determined by OEHHA. To compute the total HI, individual ratios or Hazard Quotients (HQs)) of each individual TAC are added to produce an overall HI. If the overall HI is greater than 1.0, then the impact is considered to be significant. The chronic REL for DPM as determined by OEHHA is 5 µg/m³.

Project Construction-Related Impacts
There are no existing senstive receptors within 1000 feet of the project site. Thus, the chronic HI due to Project construction activities would be less than significant.

Operational Impacts
The Project chronic HI would be < 0.01 from DPM emitted by project trucks at the residential receptors adjacent to Atlas Road. Thus, the chronic HI would be well below the BAAQMD threshold of 1 and the Project impact would be less than significant.

PM₂.₅ Concentration
Dispersion modeling also estimated the exposure of sensitive receptors to Project-related concentrations of PM₂.₅. The BAAQMD Air Quality Guidelines requires inclusion only of PM₂.₅ exhaust emissions in this analysis (i.e., fugitive dust emissions are addressed under BAAQMD dust control measures and are required by law to be implemented during Project construction).
Project Construction-Related Impacts

There are no existing sensitive receptors within 1000 of the project site. Thus, the Project-related concentrations of PM$_{2.5}$ from Project construction activities would be less than significant.

Operational Impacts

The Project’s maximum annual PM$_{2.5}$ concentration impacting residential receptors along Atlas Road would be 0.02 µg/m3. Thus, the annual operational PM$_{2.5}$ concentration would be below the BAAQMD threshold of 0.3 µg/m3 and would be less than significant.

Cumulative Toxic Air Contaminant (TAC) Impacts

The BAAQMD’s CEQA Air Quality Guidelines methodology for determining cumulative health risk requires the tallying of health risk from permitted stationary sources, major roadways and any other identified substantial TAC sources within 1000 feet of a project site and then adding the effects from these individual sources to determine whether the BAAQMD’s cumulative health risk thresholds are exceeded. Since the Project’s main sources of TAC emissions are the diesel trucks that would operate from it and since all project trucks would access the site using Atlas Road, which has existing adjacent residential uses south of its intersection with Giant Highway, the 1000-foot zone of influence for assessing cumulative TAC impacts was expanded to include the above-mentioned residential area at the recommendation of the BAAQMD (BAAQMD, August 12, 2014.)

BAAQMD has developed a geo-referenced database of permitted stationary emissions sources throughout the San Francisco Bay Area and the Stationary Source Risk & Hazard Analysis Tool (May, 2012) for estimating health risks from the permitted sources. Three such permitted sources are located within 1,000 feet of Atlas Road, as shown below in Table III-5. BAAQMD has also developed a geo-referenced database of major roadways in the Bay Area and the Highway Screening Analysis Tool (May 2011) for estimating cumulative health risks from such roadways. There are no such major roadways near the project site or the Atlas Road residential area. BAAQMD CEQA Air Quality Guidelines also require the inclusion of surface streets within 1,000 feet of a project site with annual average daily traffic (AADT) of 10,000 or greater (BAAQMD, County Surface Street Screening Tables, May 2011.) Atlas Road does not meet this criterion.

Table III-5 shows the cumulative cancer risks, hazard indexes, and PM$_{2.5}$ concentrations (in µg/m3) impacting the existing residences from BAAQMD-permitted stationary sources near Atlas Road and Project trucks using Atlas Road.

The cumulative cancer risk for residential uses adjacent to Atlas Road would be 86.2 persons per million. Thus, the cumulative cancer risk is below the BAAQMD threshold of 100 per million and would be less than significant.
The cumulative HI for residential uses adjacent to Atlas Road would be less than 0.1, well below the BAAQMD threshold of 10. Thus, the cumulative hazard impact would be less than significant.

The cumulative annual PM$_{2.5}$ concentrations for residential uses adjacent to Atlas Road would be 0.4 μg/m3, below the BAAQMD threshold of 0.8 μg/m3. Thus, the cumulative PM$_{2.5}$ impact would be less than significant.

TABLE III-5

<table>
<thead>
<tr>
<th>Source #</th>
<th>Facility Type</th>
<th>Address</th>
<th>Cancer Risk*</th>
<th>Hazard Index*</th>
<th>PM$_{2.5}$ Concentration*</th>
</tr>
</thead>
<tbody>
<tr>
<td>17811</td>
<td>United Parcel Service (Emergency Generator)</td>
<td>1601 Atlas Road</td>
<td>57.5</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>G8426</td>
<td>United Parcel Service (Fueling Station)</td>
<td>1600 Atlas Road</td>
<td>2.5</td>
<td>0.00</td>
<td>n/a</td>
</tr>
<tr>
<td>14153</td>
<td>West County Wastewater District (Generator)</td>
<td>1600 Atlas Road</td>
<td>26.4</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Project Emission Source

<table>
<thead>
<tr>
<th></th>
<th>Cancer Risk</th>
<th>Hazard Index</th>
<th>PM$_{2.5}$ Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trucks using Atlas Road</td>
<td>5.9</td>
<td>0.0</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Total Cumulative Impacts

<table>
<thead>
<tr>
<th></th>
<th>Cancer Risk</th>
<th>Hazard Index</th>
<th>PM$_{2.5}$ Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.3</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

Significance Thresholds

<table>
<thead>
<tr>
<th></th>
<th>Cancer Risk</th>
<th>Hazard Index</th>
<th>PM$_{2.5}$ Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Significant Impact?

<table>
<thead>
<tr>
<th></th>
<th>Cancer Risk</th>
<th>Hazard Index</th>
<th>PM$_{2.5}$ Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

* The BAAQMD stationary source cancer risks, hazard indexes, and PM$_{2.5}$ concentrations represent maximum TAC impacts at locations close to the sources. The BAAQMD also provides distance adjustment factors to estimate risks, hazards and concentrations at more distant locations. The three stationary sources listed above are all located to the north across Atlas Road, at least 150 feet from the residential area to the south. At this distance, risks, hazards and concentrations due to each stationary source would decrease to about 25%-50% of the tabulated values.

e. Odors – Less Than Significant Impact. The BAAQMD’s significance criteria for odors are subjective and are based on the number of odor complaints generated by a project. Generally, the BAAQMD considers any project with the potential to frequently expose members of the public to objectionable odors to cause a significant impact. Project, diesel-fueled construction equipment and freight-carrying trucks would generate some odors. However, these emissions typically dissipate substantially with distance from the source.
and, given that the warehouse/distribution center site is located more than 1000 feet from the nearest existing residential uses, would be unlikely to affect a substantial number of people. Thus, odor impacts associated with construction and operation of the Project would be less than significant.
IV. BIOLOGICAL RESOURCES – Would the project:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

g) Results in a conversion of Oak Woodlands that will have a significant effect on the environment
Background:

A biological resources study was prepared for the site by Tetra Tech Inc. (Biological Analysis Report, Former Richmond Steelscape Facility, July, 2014). This study included a field reconnaissance (conducted in June 19, 2014) and literature review for the purpose of identifying sensitive plant and wildlife species, sensitive habitats, and biological constraints potentially occurring on the Project site. The study found that the majority of the site has been developed with structures and paving. The undeveloped areas of the site contain non-native annual grassland vegetation, comprised of species that are relatively common to the region. The biological resources report prepared for the project found that no special status plant or animal species have been identified on the site or would be expected to be located on the site. A drainage ditch exists off the site, parallel to the northern portion of the site, supports riparian habitat. No federally protected wetlands exist on the site (as defined by Section 404 of the Clean Water Act). The report is available for review at the Richmond Planning and Building Services Department.

a. Effect on Protected Species – Less Than Significant Impact. As described above, the majority of the site has been developed with structures and paving. An off-site drainage ditch supports riparian habitat, but development of the site would not result in any impacts to that area. Therefore the project would not adversely affect any sensitive plant communities or wildlife habitats.

b, c, and d. Riparian, Wetlands, and Wildlife Corridors - Less Than Significant Impact. As described above, no federally protected wetlands exist on the site and the project would not affect the drainage ditch located off-site to the north. A wetland area is located off-site north of the railroad tracks, but it is isolated from the site by a railroad track berm, and no direct or indirect impacts to those wetlands would occur. The project site does not include fish habitat and the project would not interfere with any fish or wildlife species.

e. Local Policies/Ordinances - No Impact. The project would not result in the removal of trees and would include new landscaping, including trees and smaller plants. No local policies or ordinances affecting biological resources exist which would apply to the project.

f. Habitat Conservation Plan/Natural Communities Conservation Plan - No Impact. The project would not conflict with the provisions of an adopted Habitat Conservation Plan, Natural Conservation Community Plan, or other approved local, regional, or state Habitat Conservation Plan because the site is not subject to any such plan and the project would not affect any such plan.

g) Oak Woodland Conversion – No Impact. There are no oak woodlands on the site that could be affected by the proposed project.
V. CULTURAL RESOURCES – Would the project:

a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?
 - Potentially Significant Impact
 - Less Than Significant Impact
 - Less Than Significant Impact with Mitigation
 - No Impact

b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?
 - Potentially Significant Impact
 - Less Than Significant Impact
 - Less Than Significant Impact with Mitigation
 - No Impact

c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?
 - Potentially Significant Impact
 - Less Than Significant Impact
 - Less Than Significant Impact with Mitigation
 - No Impact

d) Disturb any human remains, including those interred outside of formal cemeteries?
 - Potentially Significant Impact
 - Less Than Significant Impact
 - Less Than Significant Impact with Mitigation
 - No Impact

Background:

The riparian areas of the shoreline of Point Pinole were used by the Huchium group of the Ohlone Native American people. The City of Richmond has mapped an area of prehistorical archaeological sensitivity along the shore of San Pablo Bay and further areas were identified in the EIR for the Point Pinole Business Park (Baseline Environmental Consulting, 1992.) The areas of sensitivity are not located on the project site; however, the zones are near to the project site. The zone identified by previous archaeological investigations is located north of the Southern Pacific railroad tracks along the San Pablo Bay shoreline. An area termed to be “Historic Spanish Ranching” was identified in the 1992 EIR on a portion of the project site. The area may historically have been part of a Mexican-era rancho development.

a. Historic Resources – No Impact. Demolition of the two vacant buildings including rail spur removal and remediation of the site has been approved by the City of Richmond Planning and Building Services Department. These buildings were not considered to be locally historically significant by the City of Richmond and are not considered historic resources, under CEQA. No impacts to historical resource would result from the project.

b. Archaeological Resources – Less Than Significant With Mitigation. The entire project site has been previously disturbed by construction and the new building proposed and associated hardscape would be within a similar footprint of the current development. It is highly unlikely that any archaeological resources would be disturbed by the proposed project. However, the following measure is incorporated to mitigate any potential impacts to Native American and historical archaeological resources, in the event that unanticipated archaeological remains were encountered during construction.
Mitigation Measure V.1: The developer shall inform all personnel connected with construction of the project of the possibility of finding archaeological resources. If such resources are encountered during construction, all work shall be halted within the area of the find and a qualified archaeologist shall be retained to ascertain the nature of the discovery, the significance of the find, and provide proper management recommendations. Project personnel shall not collect cultural resources found. Prehistoric cultural material includes, but is not limited to, chert or obsidian flakes, projectile points, mortars, and pestles, dark friable soil containing shell and bone dietary debris, heat-affected rock, human burials, shell midden deposits, hearth remains, and stone and/or shell artifacts. Historic material, including but not limited to, stone or adobe foundations or walls, structures and remains with square nails, whole or fragmentary ceramic, glass or metal objects, wood, nails, brick, or other materials may occur within the project area in deposits such as old privies or dumps. Any identified cultural resources shall be recorded on DPR 523 historic resource recordation forms.

c. Paleontological Resources - *Less Than Significant with Mitigation.* A fossil locality search was performed on July 21, 2014, using the University of California, Museum of Paleontology’s (UCMP) online locality search page. No recorded localities appeared in the City of Richmond. The site has been disturbed with previous development, including subterranean basements. Therefore, the likelihood of the project affecting any significant paleontological resources is minimal. However, a mitigation measure has been added to reduce the level of impact to less than significant, in the event that paleontological resources were encountered during the construction of the project.

Mitigation Measure V.2: If paleontological resources are encountered during construction, all work shall be halted within a 50-foot radius of the findings and a qualified paleontologist shall be retained to ascertain the nature of the discovery, the significance of the find, and provide proper management recommendations. Project personnel shall not collect paleontological resources found.

d. Human Remains - *Less Than Significant with Mitigation.* No evidence of human remains is known to exist for the site. If human remains of Native American origin are discovered on the site during project construction, it will be necessary to comply with state laws relating to the disposition of Native American burials, which fall under the jurisdiction of the Native American Heritage Commission (NAHC) (Public Resources Code Section 5097). In addition, State law (CEQA Guidelines Section 15064.5 and the Health and Safety Code Section 7050.5) requires that the following mitigation be implemented if any human remains are discovered.

Mitigation Measure V.3 If human remains are found during project demolition and construction activities, the project proponent must contact the
Contra Costa County Coroner. If the Coroner determines that the remains are not subject to his authority, he shall notify the Native American Heritage Commission who in turn must contact the NAHC within 24 hours if it is determined that the finds are of Native American origin. There shall be no further excavation or disturbance of the site or any nearby areas reasonably suspected to overlie adjacent human remains until the County Coroner is contacted. The NAHC shall contact a most likely descendant who shall have the opportunity to make a recommendation within 24 hours after being notified by the NAHC as to how the remains will be treated.
VI. GEOLOGY AND SOILS – Would the project:

a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:

i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to California Geologic Survey Special Publication 42.

ii) Strong seismic ground shaking?

iii) Seismic-related ground failure, including liquefaction?

iv) Landslides?

b) Result in substantial soil erosion or the loss of topsoil?

c) Be located on a geologic unit or soil that is unstable or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?

e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?

Background:

A preliminary geotechnical engineering report was prepared for the project site by Mid Pacific Engineering (July 11, 2014). The study included a site reconnaissance; review of geologic maps, groundwater maps, and fault maps of the area; subsurface exploration, including the drilling and sampling of 12 test borings to the maximum depth of approximately 50 feet below the existing site grades. Collection of bulk samples of near-
surface soils from proposed pavement areas; laboratory testing of selected soil samples; and, engineering analyses were undertaken. The report is summarized below and is available for review at the City of Richmond, Planning and Building Services offices. A final geotechnical engineering study will be prepared prior to building permit approval.

Soils

Exploratory soil borings identified the soils as being comprised of clays, silts, and sands. Test borings were located within paved (consisting of about three to four inches of asphalt concrete over about 12 to 24 inches of aggregate base) and unpaved areas of the site. The borings exposed variable soil conditions consisting of interbedded sandy and silty clays, sandy and clayey silts, and silty and clayey sands to the maximum of 50 foot of exploration. Intermittent layers of dense, gravelly sands and sandy gravels were encountered below depths of about 10 to 15 feet. The upper soils beneath the pavements generally were in very moist to nearly saturated moisture conditions.

The surface and near-surface soils were determined to be variable and contain concentrations of expansive clays. The near-surface clay soils were found to possess a moderate expansion potential.

Groundwater

Groundwater in the site borings was found at a depth of approximately nine and half to twenty-one feet below ground surface in all borings, except for two. Data from the closest groundwater-monitoring well, located about 1.3 miles southeast of the site indicates depth to groundwater between about four and eleven feet below ground surface from 1997 through 2013. Groundwater in the area is anticipated to be somewhat variable due to seasonable changes, subsurface soil conditions, and adjacent Bay levels.

Seismic Hazards

Fault Rupture

The project site does not lie with an Alquist-Priolo Earthquake Fault Zone, as designated by the California Geologic Survey (formerly California Division of Mines and Geology) under the Alquist-Priolo Earthquake Fault Zoning Act (1972). The closest such fault zone is the Hayward-Rodgers Creek fault zone located approximately 0.56 miles southwest of the project site. However, the potential exists for fault related surface rupture at the site.

Seismic Shaking

The site is located in a seismically active region of California. Significant earthquakes in the Bay Area have been associated with movements along well-defined fault zones. Earthquakes occurring along any of a number of other Bay Area faults have the potential to produce strong ground shaking at the site. The primary seismic risks at the site are from
earthquakes along the Hayward-Rodgers Creek fault. This fault is considered historically active with several fault segments located with approximately 0.6 miles of the project site.

Ground Failure

Liquefaction is the temporary transformation of a water-saturated, cohesionless (sandy) soil into a viscous liquid during strong- to violent ground shaking. Liquefaction can result in loss of support for foundations from differential settlement or flow-related failures on sloping ground or where open faces (such as creek channels) are present (lateral spreading). The potential for liquefaction at a site is usually determined based on the results of a subsurface geotechnical investigation and the groundwater conditions beneath the site. The geotechnical report found that the site is located in an area mapped as "low liquefaction susceptibility." The site is not located within a State Designated Seismic Hazard Zone for liquefaction; however, the site would likely be subject to seismic settlement during large earthquakes. The site could be subject to about one and a half to two and a half inches of settlement during a seismic event.

The site does not have any steep slopes, therefore landslide hazards are minimal.

Discussion:

a) i, ii, iii Fault Rupture, Ground Shaking, Ground Failure - Less Than Significant with Mitigation. As described above, the site may be subject to fault rupture, liquefaction, and differential settlement. These processes may damage or destroy the building and infrastructure proposed for the site if those facilities are not properly designed or located. In addition, strong seismic shaking may damage even properly designed constructed buildings and infrastructure, and result in injury or death to occupants from falling objects, gas line ruptures, and fires. These impacts are common to many sites near active faults in California. The preliminary geotechnical report includes conclusions and recommendations for design and construction of the proposed project.

A design-level geotechnical report has not been prepared for the project site, but will be required by the City of Richmond prior to project approval. That report will specify a foundation system design intended to reduce the risk of major seismic shaking damage. Geotechnical and seismic design criteria would be required by the City of Richmond to conform to engineering recommendations in conformance to the seismic requirements of Zone 4 of the currently adopted Uniform Building Code (UBC) and the California Building Code (Title 24) additions. Implementation of mitigation measure VI-1 would ensure that potential impacts related to seismic issues are reduced to a less-than-significant level.

Mitigation Measure VI.1: The applicant shall provide a design-level geotechnical report to the City prior to any building permit approvals. The project shall comply with all foundation and other design criteria described in the preliminary and final geotechnical investigation. That report shall provide detailed design criteria for the project foundations; these criteria shall be followed in project foundation design. The project geotechnical investigation
shall include recommendations that all structural, architectural, and mechanical details be designed to resist earthquake ground shaking, and those measures also shall be implemented in building and infrastructure design.

a. iv. Landslides - **No impact.** The project site is located on relatively level topography in an urbanized area. Landslide hazards to the project would be minimal and do not require further evaluation. Therefore, potential for landslides is considered less than significant.

b. Soil Erosion - **Less Than Significant with Mitigation.** Soil erosion hazards could occur during the preliminary stages of construction, especially during initial site grading and prior to surfacing the parking areas. Soil exposed by grading activities could be subject to erosion if exposed to heavy winds or rain. In addition to causing sedimentation problems in storm drain systems, rapid water erosion could undermine engineered soils beneath foundations and paved surfaces.

The project applicant would be required by the City of Richmond to create and implement an erosion control plan prior to the start of grading activities, and would be required by the California Regional Water Quality Control Board to create a storm water pollution prevention plan (SWPPP) that incorporates best management practices (BMPs) during construction activities to minimize soil erosion hazard during construction activities, as discussed in Hydrology and Water Quality Section Mitigation Measure IX – 1 and IX - 2. Soil erosion and/or loss of topsoil during construction and grading activities would be a potentially significant impact that would be reduced to a less-than-significant level with implementation of the following mitigation measure.

c. Unstable Soil - **Less Than Significant with Mitigation.** As discussed in Item VI.ai i, ii, iii, above, the project site is subject to risks associated with differential settlement. Compliance with the geotechnical report recommendations, as required by the City of Richmond, would reduce the potential for the project to create substantial risk to life or property to a less than significant level. The project site is not subject to lateral spreading because it is not near, or adjacent to, an open face (i.e. the bay shore).

d. Expansive Soil - **Less Than Significant with Mitigation.** The surface and near-surface soils were determined to be variable and contain concentrations of expansive clays. The near-surface clay soils were found to possess a moderate expansion potential. This potentially significant impact would be reduced to a less-than-significant level by site preparation, use of engineered fill, and foundation design as specified in the project geotechnical report, the implementation of which is specified in Mitigation VI.1, above.

e. Inadequate Soils for Disposal - **No Impact.** The project would not include the installation of septic tanks or alternative wastewater disposal systems, and would therefore have no impact on soils related to septic tanks or alternative wastewater disposal systems.
VII. GREENHOUSE GAS EMISSIONS – Would the project:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

Background:

Gases that trap heat in the atmosphere are referred to as greenhouse gases (GHGs) because they capture heat radiated from the sun as it is reflected back into the atmosphere, much like a greenhouse does. The accumulation of GHGs has been implicated as the driving force for global climate change. The primary GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), ozone, and water vapor.

While the presence of the primary GHGs in the atmosphere are naturally occurring, CO2, CH4, and N2O are also emitted from human activities, accelerating the rate at which these compounds occur within earth’s atmosphere. Emissions of CO2 are largely by-products of fossil fuel combustion, whereas methane results from off-gassing associated with agricultural practices and landfills. Other GHGs include hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride, and are generated in certain industrial processes. Greenhouse gases are typically reported in units of “carbon dioxide-equivalents” (CO2e).²

There is international scientific consensus that human-caused increases in GHGs have and will continue to contribute to global warming. Potential global warming impacts in California may include, but are not limited to, loss in snow pack, sea level rise, more extreme heat days per year, more high ozone days, more large forest fires, and more drought years. Secondary effects are likely to include a global rise in sea level, impacts to agriculture, changes in disease vectors, and changes in habitat and biodiversity (California Climate Change Portal, accessed September, 2015.)

California Air Resources Board (CARB) estimated that in 2011 California produced 448 million gross metric tons of CO2e, or about 535 million U.S. tons CARB found that transportation is the source of 37.6 percent of the state’s GHG emissions, followed by industrial sources at 20.8 percent and electricity generation (both in-state and out-of-state).

² Because of the differential heat absorption potential of various GHGs, GHG emissions are frequently measured in “carbon dioxide-equivalents,” which present a weighted average based on each gas’s heat absorption (or “global warming”) potential.

In the San Francisco Bay Area, fossil fuel consumption in the transportation sector (on-road motor vehicles, off-highway mobile sources, and aircraft) and the industrial and commercial sectors are the two largest sources of GHG emissions, each accounting for approximately 36 percent of the San Francisco Bay Area’s 95.8 million metric tons of CO2e emitted in 2007. Electricity generation accounts for approximately 16 percent of the San Francisco Bay Area’s GHG emissions followed by residential fuel usage at 7 percent, off-road equipment at 3 percent and agriculture at 1 percent. (Bay Area Air Quality Management District, Source Inventory of Bay Area Greenhouse Gas Emissions, accessed September, 2014; City of Richmond, 2005 Greenhouse Gas Emissions Inventory, February 2009, accessed September, 2014.)

The City of Richmond published a community-wide GHG emissions inventory for the year of 2005. The inventory attributed the largest sources of GHG emissions to commercial/industrial sources such as natural gas and electrical (87.8 percent) and transportation (8.7 percent). The City of Richmond emitted approximately 5,853,020 metric tons of CO2e in 2005.

AB 32 and the California Air Resources Board 2008 Scoping Plan

Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), the California Global Warming Solutions Act of 2006, signed by Governor Arnold Schwarzenegger on September 27, 2006, required the CARB to lower GHG emissions to 1990 levels by 2020 - a 25 percent reduction statewide, with mandatory caps for significant emissions sources. AB 32 directed CARB to develop discrete early actions to reduce GHG while also preparing a scoping plan (i.e., the Climate Change Scoping Plan) in order to identify how best to reach the 2020 limit.

Motivated by AB 32, the CARB estimated statewide GHG emissions in 2020 under business-as-usual (BAU) conditions (i.e., a scenario where no GHG reduction measures are taken) and identified a 28.5 percent reduction in GHG from year 2020 BAU levels as necessary to achieve the targets of AB 32. CARB has since updated the BAU forecast to reflect conditions in light of the 2008 economic downturn and measures not previously considered in the Scoping Plan baseline inventory. The revised forecast shows that a 21.6 percent GHG reduction from 2020 BAU would be necessary.

Statewide strategies to reduce GHG emissions include the Low Carbon Fuel Standard (LCFS), the California Appliance Energy Efficiency regulations, the California Renewable

3 On December 29, 2011, the U.S. District Court for the Eastern District of California issued several rulings in the federal lawsuits challenging the LCFS. One of the court’s rulings preliminarily enjoins the CARB from enforcing the regulation during the pendency of the litigation. In January 2012, CARB appealed the decision and on April 23, 2012, the Ninth Circuit Court granted CARB’s motion for a stay of the injunction.
Energy Portfolio standard, changes in the motor vehicle corporate average fuel economy (CAFE) standards, and other early action measures that would ensure the state is on target to achieve the GHG emissions reduction goals of AB 32.

California Green Building Standards Code

On January 12, 2010, the State Building Standards Commission unanimously adopted updates to the California Green Building Standards Code, which went into effect on January 1, 2011. CALGreen is a comprehensive and uniform regulatory code for all residential, commercial and school buildings.

CALGreen does not prevent a local jurisdiction from adopting a more stringent code as state law provides methods for local enhancements. CALGreen recognizes that many jurisdictions have developed existing construction and demolition ordinances, and defers to them as the ruling guidance provided they provide a minimum 50 percent diversion requirement. CALGreen also provides exemptions for areas not served by construction and demolition recycling infrastructure. State building code provides the minimum standard, which buildings need to meet in order to be certified for occupancy. Enforcement is generally through the local building official.

The development of CALGreen is intended to (1) cause a reduction in GHG emissions from buildings; (2) promote environmentally responsible, cost-effective, healthier places to live and work; (3) reduce energy and water consumption; and (4) respond to the directives by the Governor. In short, CALGreen is established to reduce construction waste; make buildings more efficient in the use of materials and energy; and reduce environmental impacts during and after construction.

CALGreen contains requirements for construction site selection, storm water control during construction, construction waste reduction, indoor water use reduction, material selection, natural resource conservation, site irrigation conservation, and more. CALGreen provides for design options allowing the designer to determine how best to achieve compliance for a given site or building condition. CALGreen also requires building commissioning, which is a process for verifying that all building systems, like heating and cooling equipment and lighting systems, are functioning at their maximum efficiency.

California Air Pollution Control Officers Association

The California Air Pollution Control Officers Association (CAPCOA), representing California’s 35 local air districts, launched the CAPCOA Greenhouse Gas Reduction Exchange (GHG Rx)(CAPCOA, Greenhouse Gas Exchange, accessed September, 2014.) The Exchange provides a reliable, low-cost, secure platform to encourage locally

while it continues to consider CARB’s appeal of the lower court’s decision. In a separate case, on July 15, 2013, the State of California Court of Appeal, Fifth Appellate District issued its opinion in POET, LLC v. California Air Resources Board. The Court held that the LCFS would remain in effect and that the CARB can continue to implement and enforce the 2013 regulatory standards while it corrects certain aspects of the procedures by which the LCFS was originally adopted.
generated, high quality GHG emission reduction credits that can be used to meet CEQA or other compliance requirements. The GHG Rx features locally generated and properly validated GHG emission reduction credits from voluntary projects within California and allow interaction between those who create the credits, potential buyers and funding organizations.

Bay Area Air Quality Management District

The BAAQMD is the primary agency responsible for air quality regulation in the nine county San Francisco Bay Area Air Basin. As part of their role in air quality regulation, BAAQMD has prepared CEQA air quality guidelines to assist lead agencies in evaluating air quality impacts of proposed projects and plans. The guidelines provide procedures for evaluating potential air quality impacts during the environmental review process consistent with CEQA requirements. The CEQA Air Quality Guidelines provide CEQA thresholds of significance for operational GHG emissions from land use projects for the first time. The BAAQMD has not defined GHG thresholds from construction activities, but recommends that significance be determined in relation to meeting AB 32 GHG reduction targets. OPR's amendments to the CEQA Guidelines as well as BAAQMD’s CEQA Air Quality Guidelines and thresholds of significance have been incorporated into the analysis of potential GHG impacts associated with the Project.

Richmond General Plan 2030 Energy and Climate Change

In January 2007, the City of Richmond signed onto the U.S. Mayor’s Climate Protection Agreement, committing to reducing GHG emissions to meet or surpass the Kyoto Protocol targets of a 7 percent reduction from 1990 levels by 2012. Additionally, in September 2007, Richmond’s City Council directed staff to develop a comprehensive policy to lead by example in the fight against global warming. On September 16, 2008, the City Council passed a resolution committing to the GHG emissions targets established by California’s Global Warming Solutions Act, or Assembly Bill 32 (AB 32). The City of Richmond is one of a handful of cities that have passed such resolutions.

The Richmond General Plan 2030 Energy and Climate Change goals are listed as follows. Action items are outlined in relation to each of the goals that pertain to sustainability and are relevant to residential development projects (City of Richmond General Plan 2013).

Goal EC1: Leadership in Managing Climate Change

Take steps to address climate change and to manage its effects. This entails not only pursuing ground-breaking programs and innovative strategies, but educating residents and businesses about these actions and actively monitoring results to ensure progress in critical areas. Partner with other jurisdictions and organizations to develop effective regional solutions and regulation at regional, state and federal levels. Collaborate with residents, businesses, public agencies and neighboring jurisdictions, in order to meet or exceed state requirements for reductions in greenhouse gas emissions.
Goal EC2 Clean and Efficient Transportation Options
Expand the City’s green transportation network by encouraging the use of climate-friendly technology, planning growth around multiple modes of travel and reducing automobile reliance. In addition to promoting improved public transit, partner with private developers to undertake citywide improvements that make active modes of travel, such as walking and bicycling, more comfortable and preferable options.

Goal EC3 Sustainable and Efficient Energy Systems
Reduce the City’s consumption of energy by encouraging energy conservation, and supporting the consumption of energy produced by climate-friendly technologies. Reduce the City’s overall waste stream by reducing the City’s consumption of goods and materials, and by adopting a zero-waste philosophy.

• **Renewable Energy**: Promote the generation, transmission and use of a range of renewable energy sources such as solar, wind power and waste energy to meet current and future demand and encourage new development and redevelopment projects to generate a portion of their energy needs through renewable sources.

• **Energy Efficiency and Conservation**: Promote efficient use of energy and conservation of available resources in the design, construction, maintenance and operation of public and private facilities, infrastructure and equipment.

• **Solid Waste Reduction and Recycling**: Promote waste reduction and recycling to minimize materials that are processed in landfills.

• **Water Conservation and Reuse**: Promote water conservation and recycled water use. Implement water conservation efforts for households, businesses, industries and public infrastructure. Include measures such as the following:
 o Require low-flow appliances and fixtures in all new development in accordance with EBMUD Water Service Regulations.
 o Work with water providers and water conservation agencies to create an incentives program that encourages retrofitting existing development with low-flow water fixtures;
 o Require new development and landscaped public areas to utilize state-of-the-art irrigation systems that reduce water consumption including graywater systems and rainwater catchment;
 o Encourage use of drought-tolerant and native vegetation;
 o Require new plantings be grouped by hydrozones of water needs listed in the WUCOL III developed by the Department of Water Resources and the University of California Cooperative Extension (or successor document); and
 o Require development project approvals to include a finding that all feasible and cost-effective options for conservation and water reuse are incorporated into project design including graywater systems.
Goal EC4 Sustainable Development
Reduce energy consumption by promoting sustainable land uses and development patterns. Pursue infill development opportunities and encourage the construction of higher-density, mixed-use projects around existing public transit infrastructure, schools, parks, neighborhood-serving retail and other critical services. Incorporate ecologically sustainable practices and materials into new development, building retrofits and streetscape improvements.

- **Infill Development:** Promote infill development throughout the City, especially in the targeted redevelopment areas of Central Richmond and avoid the displacement of existing residents. Promote new development and redevelopment projects to provide community amenities and uses that serve priority community needs and retain the existing urban limit lines.

- **Compact Walkable Neighborhoods and Livable Streets:** Promote safe and walkable neighborhoods and inter-connected streets through the design of streetscapes, public gathering places and all types of physical development.

- **Green Buildings and Landscaping:** Require energy and resource efficient buildings and landscaping in all public and private development projects. Require that newly constructed or renovated City-owned and private buildings and structures comply with the City’s adopted Green Building Ordinances (City of Richmond Municipal Code, Commercial and Residential Green Building Standards.)

- **Green Infrastructure:** Develop green infrastructure standards that rely on natural processes for stormwater drainage, groundwater recharge and flood management.

Goal EC5 Community Revitalization and Economic Development
Transform Richmond into a healthy community where green industries and businesses can flourish. Support sustainable businesses and practices that provide both community and environmental benefits while stimulating job and revenue growth.

Goal EC6 Climate-Resilient Communities
While the impacts of climate change on local communities are uncertain, to the extent possible, prepare to respond to and protect residents and businesses from increased risks of natural disasters such as flooding or drought.

Significance Thresholds

The BAAQMD CEQA Air Quality Guidelines identify a project specific threshold of either a bright line threshold of 1,100 metric tons of CO₂e per year or an efficiency threshold of 4.6 metric tons of CO₂e per year per service population (i.e., the number of residents plus the number of employees associated with a new development) as resulting in a cumulatively considerable contribution of GHG emissions and a cumulatively significant impact.
Alternatively, a project that is found to be consistent with a Qualified Climate Action Plan would have a less than significant impact to global climate change. This analysis applies the 4.6 metric tons of CO$_2$e per year per service population significance criterion while also reviewing the goals, policies, and measures within the Richmond Climate Action Plan.

a. Generate greenhouse gas emissions – *Less Than Significant Impact With Mitigation*. CalEEMod was used to quantify GHG emissions associated with Project construction activities (for informational purposes), as well as long-term operations associated with natural gas space and water heating, electricity, landscape maintenance, and vehicles. CalEEMod incorporates local energy emission factors and mitigation measures based on the CAPCOA’s *Quantifying Greenhouse Gas Mitigation Measures* and the *California Climate Action Registry General Reporting Protocol*.

Estimated construction GHG emissions that would be associated with the Project are presented in Table VII-1. The estimated construction GHG emissions are 309.5 metric tons of CO$_2$e. As indicated, 30-year amortized annual construction related GHG emissions would be 10.3 metric tons of CO$_2$e. Of note, there is no BAAQMD CEQA significance threshold for construction-related GHG emissions.

Table VII-1 also provides the estimated Project operational GHG emissions. The GHG operational impacts would be 6.1 metric tons per employee/service population (i.e., approximately 400 Project employees) per year, which is above the BAAQMD threshold of 4.6 metric tons per employee and thus, significant, without mitigation.

The effectiveness of various GHG reduction strategies to reduce Project GHG emissions are quantified in Table VII-2 below. As shown, the Project could reduce GHG emissions to achieve the BAAQMD threshold through the implementation of a single measure (e.g. installing 180,000 sq. ft. of solar panels). As an alternative, a combination of multiple measures could be combined to achieve the same or greater reduction. Tables VII-3 and VII-4 provide two hypothetical combinations of mitigation measures that would allow the Project to meet the target GHG emission reduction. In the former, all light bulbs are Energy Star, solid waste diversion is 75%, and the remainder of the emission reductions are met with solar panels; in the latter, only 50% of the light bulbs are Energy Star, solid waste diversion is still 75%, and the remainder of the emission reductions are met with a larger area of solar panels. The Project applicant would be free to choose the type and effectiveness of each mitigation presented in Table VII-2 as long as the total GHG reduction effectiveness is great enough to achieve the BAAQMD service population threshold (i.e., 4.6 metric tons of GHG per Project employee) (Environ, December 1, 2014.)
<table>
<thead>
<tr>
<th>Emission Source</th>
<th>GHG CO₂e Metric Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction (30-year amortized)</td>
<td>10.3</td>
</tr>
<tr>
<td>Operations</td>
<td></td>
</tr>
<tr>
<td>Area Sources</td>
<td>0.01</td>
</tr>
<tr>
<td>Energy - Electricity</td>
<td>552</td>
</tr>
<tr>
<td>Energy – Natural Gas</td>
<td>81</td>
</tr>
<tr>
<td>Mobile</td>
<td>1,426</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>302</td>
</tr>
<tr>
<td>Water</td>
<td>70</td>
</tr>
<tr>
<td>Total Emissions</td>
<td>2431.3</td>
</tr>
<tr>
<td>Total Emissions per Service Population</td>
<td>6.1</td>
</tr>
<tr>
<td>BAAQMD Efficiency Threshold</td>
<td>4.6</td>
</tr>
<tr>
<td>Potentially Significant prior to mitigation?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Mitigation Measure VII-1: Project GHG emissions from operational sources shall be reduced to 4.6 metric tons per year per Project employee or less through the implementation of any of the following measures or some combination thereof as required. (Note: the GHG reductions shown for the mitigation measures below may not necessarily be additive in all combinations; for example, the reductions obtained by installing high efficiency lighting may not be additive with the reductions obtained by purchasing electricity from a clean-energy provider).

- **Install Solar Panels** – Generate renewable energy through installing solar panels on the roof, which can be used to offset GHG emissions. Based on a calculation using the PVWatts Calculator published by the National Renewable Energy Laboratory of the US Department of Energy, the Project can offset 591 MTCO₂e/year of GHG emissions by installing approximately 180,000 square feet of solar panels. The approximate net system cost could be roughly $10MM, including Federal and State tax rebates.

- **Purchase Electricity Through Marin Clean Energy (MCE)** - Marin Clean Energy (MCE) is a Community Choice Aggregator under California law that provides lower-CO₂ source electricity to area residents and business within their service area. MCE delivers power via PG&E, which continues to maintain the power transmission and distribution infrastructure, deliver electricity, and handle billing. The electricity MCE customers receive is...

4 Estimated based on the 25-year system lifetime using the calculator provided by the Renewable & Appropriate Energy Laboratory of University of California at Berkeley. Available at: https://rael.berkeley.edu/berkeley/calculator#
deemed 50% to 100% renewable energy. By offering a much higher percentage of renewable energy than is available from PG&E, Marin Clean Energy lowers customers’ GHG emissions associated with electricity generation. The developer may reduce 552 MTCO$_2$e/year of GHG emissions associated with electricity usage through purchasing MCE’s Deep Green (i.e., 100% renewable) electricity product from MCE. The total estimated extra cost would be $4,000 per year based on the difference between PG&E and MCE rates for commercial/industrial customers. (PG&E-MCE Joint Rate Comparisons, accessed September 2104.)

Make Improvements Beyond Title 24 Requirements - In general, Title 24 requires the design of building shells and building components to conserve energy. The standards are updated periodically to allow for consideration and possible incorporation of new energy efficiency technologies and methods.

TABLE VII-2

MITIGATION MEASURE GREENHOUSE GAS EMISSIONS REDUCTION

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Reduction Category</th>
<th>Estimated Reductions (MTCO$_2$e/yr)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install Solar Panels1</td>
<td>Energy - Electricity</td>
<td>591</td>
<td>Requires Approximately 180,000 square feet of solar panels</td>
</tr>
<tr>
<td>Purchase Electricity from Marin Clean Energy (MCE)</td>
<td>Energy - Electricity</td>
<td>552</td>
<td>Purchase all electricity from MCE</td>
</tr>
<tr>
<td>Making Improvement beyond Title 24 requirements</td>
<td>Energy - Electricity</td>
<td>19</td>
<td>15% beyond 2013 Title 24 requirement</td>
</tr>
<tr>
<td>High-Efficiency Lighting</td>
<td>Energy - Electricity</td>
<td>234</td>
<td>Using Energy Star and light bulbs</td>
</tr>
<tr>
<td>Waste Diversion</td>
<td>Waste</td>
<td>66</td>
<td>Commit to 75% diversion target</td>
</tr>
<tr>
<td>Commuting Measures2</td>
<td>Traffic</td>
<td>12</td>
<td>Various measures</td>
</tr>
<tr>
<td>Purchase GHG Offsets</td>
<td>Direct</td>
<td>591</td>
<td></td>
</tr>
</tbody>
</table>

Target

591

Notes:

1Calculated using PVWatts calculator.

2Includes implementation of trip reduction program, transit subsidy, employee parking “cash out,” workplace parking charge, employee vanpool/shuttle, and provide ride sharing program.
TABLE VII-3
HYPOTHETICAL COMBINATION OF MITIGATION MEASURES (EXAMPLE 1)
GREENHOUSE GAS EMISSIONS REDUCTION

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Reduction Category</th>
<th>Estimated Reductions (MTCO$_2$e/yr)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install Solar Panels1</td>
<td>Energy - Electricity</td>
<td>291</td>
<td>Requires Approximately 88,000 square feet of solar panels</td>
</tr>
<tr>
<td>High- Efficiency Lighting</td>
<td>Energy - Electricity</td>
<td>234</td>
<td>All light bulbs are Energy Star</td>
</tr>
<tr>
<td>Waste Diversion</td>
<td>Waste</td>
<td>66</td>
<td>Commit to 75% diversion target</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>591</td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td>591</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

TABLE VII-4
HYPOTHETICAL COMBINATION OF MITIGATION MEASURES (EXAMPLE 2)
GREENHOUSE GAS EMISSIONS REDUCTION

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Reduction Category</th>
<th>Estimated Reductions (MTCO$_2$e/yr)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install Solar Panels1</td>
<td>Energy - Electricity</td>
<td>407</td>
<td>Requires Approximately 125,000 square feet of solar panels</td>
</tr>
<tr>
<td>High- Efficiency Lighting</td>
<td>Energy - Electricity</td>
<td>117</td>
<td>50% of light bulbs are Energy Star</td>
</tr>
<tr>
<td>Waste Diversion</td>
<td>Waste</td>
<td>66</td>
<td>Commit to 75% diversion target</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>591</td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td>591</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
• The new 2013 Title 24 standards used in the inventory discussed above will offer builders better windows, insulation, lighting, ventilation systems and other features that reduce energy consumption in homes and businesses. The developer may further reduce GHG emissions associated with building energy consumption by committing to building energy efficiency that exceeds the 2013 Title 24 standard. The project would reduce additional 19 MTCO₂e/year by building the Project 15% more efficient than that was required by the 2013 Title 24 standards.

• **High Efficiency Lighting** - The project would reduce GHG emissions associated with energy consumption by installing high efficiency light bulbs. ENERGY STAR-certified lighting saves 75% or more energy than conventional lighting.

• **Waste Diversion** - The project would reduce GHG emissions by increasing waste diversion from landfills through recycling and composting. Based on CalRecycle, the most recent waste diversion rate reported in 2006 by West Contra Costa Integrated Waste Management Authority was 53% (Calrecycle, accessed September, 2014.) Per California Public Resource Code Section 41780.01, California has a goal that no less than 75% of solid waste generated be source reduced, recycled, or composted by the year 2020, and annually thereafter.

• **Implement Commuting measures** - The project would implement various commuting measures including providing a transit subsidy, implementing employee parking "cash-out", charging for workplace parking, providing an employee vanpool/shuttle, and providing a ride sharing program.

• **Reduce Project Water Use** – The project could reduce its water use and consequent GHG emissions through imposition of a Water Use Reduction Plan and/or installation of a more efficient water distribution/use system;

• **Purchase GHG Offsets** – The project may be able to purchase carbon offsets, if necessary after the implementation of the other mitigation measures. The project could purchase the offsets from a carbon-offset registry such as the Climate Action Reserve (CAR) that provides carbon credits generated by the projects located close to the project within the BAAQMD jurisdiction. Generally, the carbon credits generated closer to the project are preferred by the Lead Agency over those generated farther away. The project may purchase all the offsets at once based on the annual needs and a 30-year useful life of a typical land use development project or purchase offsets on an annual basis. The latter may be subject to additional annual monitoring and/or reporting requirements. The project may purchase either directly from a CAR account holder or through a broker. Additional
guidance for the credit buyer can be found on CAR’s Climate Reserve Tonne (CRT) Marketplace (Climate Action Reserve, accessed September 2014.)

Prior to the beginning of Project construction, final plans shall be submitted for City approval that demonstrate attainment of the BAAQMD 4.6 metric ton per year per Project employee limit on GHG emissions (by including a completed a table similar to Table VII-5 below, together with all supporting data and model calculations). With the implementation of this mitigation measure, Project GHG emissions would be less than significant.

TABLE VII-5 - Project Mitigation of GHG Emissions Example Form

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Reduction Category</th>
<th>Estimated Reductions (MTCO$_2$e/yr)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project GHG Reduction Measure #1</td>
<td>Energy</td>
<td>(To be Completed by Project Proponent)</td>
<td>(To be Completed by Project Proponent)</td>
</tr>
<tr>
<td>Project GHG Reduction Measure #2</td>
<td>Solid Waste</td>
<td>(See above)</td>
<td>(See above)</td>
</tr>
<tr>
<td>Project GHG Reduction Measure #3</td>
<td>Water Use</td>
<td>(See above)</td>
<td>(See above)</td>
</tr>
<tr>
<td>Project GHG Reduction Measure #4</td>
<td>GHG Offsets</td>
<td>(See above)</td>
<td>(See above)</td>
</tr>
<tr>
<td>Project GHG Reduction Measure #5</td>
<td>Employee Commute GHG Emissions</td>
<td>(See above)</td>
<td>(See above)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>591 (or greater)</td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td>591</td>
<td></td>
</tr>
</tbody>
</table>

b. Conflict with an applicable plan – Less Than Significant Impact. The City of Richmond has been working toward the adoption of a Climate Action Plan regarding the

5 At this time, there are no projects listed on the California Air Pollution Control Officers Association Greenhouse Gas Exchange (GHG Rx) that are in the jurisdiction of the BAAQMD. BAAQMD staff expects the first projects in the San Francisco Bay Area to be listed within a few months.
reduction of GHG emissions. The City has established a baseline government and community-wide inventory of GHG emissions. The Project would result in a significant impact if it would be in conflict with AB 32 State goals and the goals, policies, and measures of the applicable Climate Action Plan for reducing GHG emissions. The assumption is that AB 32 and the Climate Action Plan will be successful in reducing GHG emissions and reducing the cumulative GHG emissions statewide by 2020. The City and State have taken these measures, because no project individually could have a major impact (either positively or negatively) on the global concentration of GHG. Therefore, the Project has been reviewed relative to the AB 32 measures and Richmond General Plan 2030 Energy and Climate Change and it has been determined that the Project would not conflict with the goals of AB 32 and the proposed Climate Action Plan.

The principal State plan and policy adopted for the purpose of reducing GHG emissions is AB 32. The quantitative goal of AB 32 is to reduce GHG emissions to 1990 levels by 2020. Statewide plans and regulations such as GHG emissions standards for vehicles and the Low Carbon Fuel Standards (LCFS) are being implemented at the statewide level, and compliance at the specific plan or project level is not addressed. Therefore, the Project does not conflict with these plans and regulations.

The regulations, plans, and polices adopted for the purpose of reducing GHG emissions that are directly applicable to the Project include Title 24 Energy Efficiency Standards for Residential and Nonresidential Buildings and the Title 24 California Green Building Standards Code. The Project would be required to comply with Title 24 California Green Building Standards Code; the Project would be developed in compliance with the requirements of these regulations. Therefore the Project would not conflict with applicable plans, policies, and regulations adopted for the purpose of reducing GHG emissions and thus would have no impact in this area.
VIII. HAZARDS AND HAZARDOUS MATERIALS – would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?
e) For a project located within an airport land use plan or where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?
g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?
h) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

Background:

The Project site has been historically used for industrial purposes. In 2002, a Phase I environmental site assessment and a Phase II investigation were conducted by ENVIRON on behalf of the former occupant of the site. Based on the results of testing soil and
groundwater samples, the environmental issues identified in 2002 were consistent with those identified by the previous investigations conducted in 1997. In addition, a report was prepared by Environ, dated November 2013, entitled “Environmental Summary, Former Steelscape Facility, 2995 Atlas Road, Richmond, California”. That report presented the results of previous investigations and mitigation measures conducted to date at the project site. A Final Demolition and Remediation Environmental Work Plan was prepared for the project by Tetra Tech Inc., dated June 2014. The San Francisco Bay Regional Water Quality Control Board (Water Board) provided concurrence with the Work Plan on June 10, 2014. California EPA’s Envirostar database, accessed July 28, 2014, shows no “Cortese List” hazardous materials or cleanup sites on the project site. Remediation of the site is ongoing and scheduled for completion in Spring 2015. A remediation completion report will be issued upon completion of the remediation, and would be reviewed and approved by the State Water Resources Control Board (SWRCB).

Discussion:

a. **Hazardous Materials Transport - Less Than Significant With Mitigation.** The proposed project would consist of general warehouse uses. Depending on the uses of the units, small amounts of hazardous materials could be used and/or stored on the site. Project occupants would be required to comply with all Federal and State safety regulations relating to the transport, use, handling, disposal, and storage of hazardous materials and wastes, and businesses are required by law to ensure employee safety by identifying hazardous materials, and adequately training workers. Therefore, the hazards to the public would be minimized and the proposed project would not pose a significant hazard to the public or environment.

Construction activities would require the use of certain hazardous materials such as fuels, oils, solvents, and glues. Inadvertent release of large quantities of these materials into the environment could adversely impact soil, surface waters, or groundwater quality. On-site storage and/or use of large quantities of materials capable of impacting soil and groundwater would not typically be required for a project of the size and type proposed. In addition, any use of the site that involved use of substantial quantities of hazardous materials would require a Conditional Use Permit from the City, which would trigger additional environmental review. The potentially significant risk associated with hazardous materials used during construction would be reduced to a less-than-significant level with implementation of Mitigation Measures IX-1 and IX-2 (in Section IX. Hydrology).

b. **Hazardous Emissions – Less Than Significant Impact.** A Final Demolition and Remediation Environmental Work Plan was prepared for the project by Tetra Tech Inc., dated June 2014. The Work Plan indicated that chemicals historically used at the site have included solvents, paints, diesel fuel, lubricating oils, metals (zinc, lead, antimony, aluminum, and bismuth) chromic acid, and other acids and bases (for pH adjustment). The Work Plan’s purpose is to detail the field effort that would be conducted in order to demolish the existing building; remove and dispose of soil impacts with contaminants of concern, and install groundwater monitoring wells at the site. As discussed above, the Water Board provided concurrence of the Work Plan, which had been amended based on
Water Board staff comments. The Work Plan detailed the plans to demolish the buildings on the site, remove and dispose soil impacted with contaminants of concern, and install groundwater monitoring wells at the site. Following completion of the soil remediation activities and monitoring well installation, a final report will be produced that documents the remedial action, well drilling, installation, and development activities. Groundwater monitoring reports are to be prepared semiannually summarizing the results of the monitoring. The project is required to following all regulations regarding hazardous materials. Compliance with these existing laws and regulations would result in a less-than-significant impact from the project’s construction and operation.

c. Hazardous Materials Release - Less Than Significant Impact. The project site is located within one mile of an elementary school. However, the project would consist of general warehouse uses and would not emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste. As described above, small amounts of hazardous materials could be used and/or stored on the site. Project occupants would be required to comply with all Federal and State safety regulations relating to the transport, use, handling, disposal, and storage of hazardous materials and wastes, and businesses are required by law to ensure employee safety by identifying hazardous materials, and adequately training workers. Therefore, the hazards to the public would be minimized and the proposed project would not pose a significant hazard to the public or environment.

d. Hazardous Site List - No Impact. The project site is not on the list of hazardous materials sites compiled pursuant to Government Code Section 65962.5, commonly called the “Cortese List.”

e. Public Airport Hazards - No Impact. The closest public use airport to the project site is the Oakland International Airport, located in the city of Oakland, approximately seventeen miles southeast of the project site. Therefore, no impact would result.

f. Private Airport Hazards - No Impact. The closest private airstrip to the project site is Buchanan Field in Concord, approximately fifteen miles east of the project site. Therefore, there would be no impact.

g. Emergency Response Plan - No Impact. The project would not interfere with any roadways or other emergency access-ways. Therefore, it would not establish any barrier that would interfere with any adopted emergency response or evacuation plan. Therefore this impact would be less than significant.

h. Wildland Fires - No Impact. The project site is located in a built-out, urban area and is not intermixed or located adjacent to wildlands. Therefore, the proposed project would not expose people or structures to significant risks associated with wildland fires, and there would be no impact.
IX. HYDROLOGY AND WATER QUALITY – Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Violate any water quality standards or waste discharge requirements?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b)</td>
<td>Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c)</td>
<td>Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d)</td>
<td>Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e)</td>
<td>Create or contribute runoff water which would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted runoff?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f)</td>
<td>Otherwise substantially degrade water quality?</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>g)</td>
<td>Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>h)</td>
<td>Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>i)</td>
<td>Expose people or structures to a significant risk of loss, injury, or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>j)</td>
<td>Inundation by seiche, tsunami, or mudflow?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>
Background:

The site is located on the flat terrain near San Pablo Bay, approximately 33 feet above mean seal level, and slopes slightly to the north towards San Pablo Bay. The site is located in San Pablo Basin and the Garrity Watershed. Drainage flows to the storm drain system via the culvert located on the northwest boundary of the site, and then travels to San Pablo Bay. The natural topography and drainage channel configurations of the area have been significantly altered by grading for industrial uses, roadways, and railways. (Tetra Tech, Inc. Final Demolition and Remediation Environmental Work Plan, June 2014.)

The project site is not located in a 100-year or 500-year flood zone, but much of the area north of the SP railroad tracks, adjacent to the project, to the north, is subject to flooding during the 100-year coastal flood. (City of Richmond, General Plan 2030, Map 7.1 Floodplains and Watersheds.)

Discussion:

To address the issue of changes in surface water quality as a result of development and construction activities, the federal government implemented the National Pollution Discharge Elimination System (NPDES). NPDES is an amendment of the federal Clean Water Act from 1987 that mandates that each population center obtain a permit to discharge stormwater. The limits vary by category of industry and are based on a level of treatment that uses the best available technology. Additionally, the 1987 amendments required that municipal stormwater discharges obtain NPDES permit coverage, which, in effect, prohibited non-stormwater discharges into municipal storm drain systems and required the implementation of controls to reduce pollutants in stormwater to the maximum extent practicable. Because the project would disturb more than one acre of land, storm water that would be discharged from the site during construction activity would be subject to regulation under the NPDES program.

The California State Water Resources Board is responsible for establishing water quality standards statewide, and designates the San Francisco Bay Regional Water Quality Control Board (RWQCB) for regulation of discharges of wastes and runoff to San Francisco Bay, and as well as issuing permits for discharges of wastewater and runoff. Development projects, either during construction or from use, may result in a variety of types of pollution discharges in violation of water quality standards or requirements, depending on size, location, topography, nearby creeks and drainages, soil conditions, and connections to public water and sewer systems. Construction activity and final development characteristics of developments may result in violations of water quality standards or discharge requirements, and have adverse impacts on water quality.
Construction Impacts

Construction of the proposed project, as well as grading and excavation activities, may result in temporary impacts to surface water quality. Project grading and construction activities could affect the water quality of storm water surface runoff. Construction of the proposed buildings and paving of streets, sidewalks, and parking areas would also result in a disturbance to the underlying soils, thereby increasing the potential for sedimentation and erosion. When disturbance to underlying soils occurs, the surface runoff that flows across the site may contain sediments that are ultimately discharged into the storm drainage system. The project would be required to include a Stormwater Pollution Prevention Plan (SWPPP) to control construction stormwater quality. Mitigation Measure VI-2, in Item VI.b, above, addresses the SWPPP and would reduce this impact to a less-than-significant level.

Post-Construction Impacts

After construction, runoff from the site could include oil and grease from Project roadways, and herbicides and pesticides associated with landscaping. The San Francisco Bay RWQCB also has issued a Municipal Regional Stormwater NPDES Permit (Permit Number CAS612008) (MRP). Under provisions of the MRP, projects that add and/or replace more than 10,000 square feet of impervious surface, or 5,000 square feet of uncovered parking area, are required to design and construct stormwater treatment controls to treat post-construction stormwater runoff. Amendments to the MRP require all of the post-construction runoff to be treated by using Low Impact Development (LID) treatment controls, such as biotreatment facilities.

The MRP also identifies hydromodification management requirements. Projects must meet one of the following four options to show compliance with the Hydromodification Management Standard: (1) no net increase in impervious area, (2) implementation of hydrograph modification Integrated Management Practices, (3) estimated post-project runoff durations and peak flows do not exceed pre-project durations and peak flows, or (4) projected increases in runoff peaks and durations will not accelerate erosion of receiving stream reaches.

The City of Richmond’s Municipal Code requires new development that might result in the release of stormwater pollutants to undertake all practicable measures to reduce such pollutants and specifies building and design measures that reduce stormwater pollution. Detailed standards for the building construction within designated flood zones are also included.

During construction, discharges of stockpiled fill materials or erosion of exposed soil into local storm drains and culverts during rainstorms could have adverse water quality impacts on San Pablo and San Francisco Bays.

A Stormwater Pollution Prevention Plan (SWPPP) was prepared for the demolition of the buildings on the site and for environmental remediation on May 14, 2014. Section 8.0 of
the SWPPP consists of the Construction Site Monitoring Program (CSMP). The purpose of the CSMP is to provide monitoring procedures to ensure that construction activities are conducted in compliance with the Discharge Prohibitions of the General Permit. It describes the personnel responsible for overall stormwater compliance on the site, the requirements for visual monitoring inspections of the site prior to anticipated storm events, during extended storm events, and after actual storm events to identify areas contributing to a discharge of stormwater associated with remediation activities. The Project would include a SWPPP and Stormwater Control Plan to prevent contamination of nearby waterways from construction stormwater during and after the construction of the building and associated site improvements.

A Stormwater Control Plan has been prepared for the project and submitted to the City for review. The Stormwater Control Plan includes eight stormwater treatment areas totaling 99,700 square feet. After treatment, runoff would be directed to the on-site stormwater detention basin in the northwest area of the site, from which it would drain into the culvert located on the northwest boundary of the site, and then travel to San Pablo Bay in the storm drain system. The following additional measures shall be implemented to reduce this impact to less than significant.

Mitigation Measure IX - 1: As required by the Contra Costa County Clean Water Program and the San Francisco Bay Regional Water Quality Control Board, the applicant shall prepare and implement a SWPPP for the construction of the project.

Mitigation Measure IX - 2: For post-construction stormwater discharges, the project shall prepare and implement a C.3 Stormwater Control Plan.

Significance after Mitigation: The implementation of the mitigation measures above would reduce potential impacts related to water quality to a less-than-significant level.

b. Groundwater Supplies – Less than Significant Impact The project site would be served by the East Bay Municipal Utility District (EBMUD). The project site does not represent a major groundwater recharge resource, because of its small size and because it is mostly surrounded by development. The project is not expected to deplete groundwater supplies and would have no impact on recharge or local groundwater table levels.

c., d., and e Drainage - Less than Significant Impact. Drainage on the project site would not change from the current drainage. All drainage from the site would be transmitted to the public storm drain system. The drainage ultimately flows into San Pablo and Francisco Bays. The project is proposed to be constructed with drainage patterns which would, for the most part, follow the existing drainage pattern. Therefore, the project would not substantially alter the existing drainage patterns of the site or area or contribute to local or downstream flooding.
g. **Housing within Flood Zone – No Impact.** The project does not propose any housing.

h. **Flooding – No Impact.** The project site is not located within the 100-year flood zone.

i. **Dam failure – Less than Significant Impact.** The project site is located within the inundation area of the Briones and San Pablo Dams, which are located approximately six miles east of the project site. Due to the intervening distance between the two dams and the project site, it is not likely that any floodwaters would reach the site with enough speed or depth to cause property damage or personal injury.

j. **Tsunami, Seiche, or Mudflow - Less Than Significant Impact.** The United States Geologic Service has estimated that the San Francisco Bay will experience a tsunami once every 200 years. A probable maximum tsunami wave of about 7.0 feet above Mean Sea Level (msl) Datum is estimated to occur at 500-year intervals. Any damage from tsunamis in the Richmond area is expected to be limited to the immediate shoreline area. The project site is not located in an area at risk from a tsunami (City of Richmond General Plan 2030.) Therefore, impacts from a tsunami would be considered less than significant. The project site is also not susceptible to seiche impacts, due to its distance from the Bay. The Bay Area has not been adversely affected by seiches during its history. The impacts from inundation by seiche or mudflow would be at a less-than-significant level. Inundation by mudflow is considered to be not probable due to the urbanized nature and flat topography of the project area.
X. LAND USE AND PLANNING – Would the project:

a) Physically divide an established community? ☐ ☐ ☐ ☒

b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect? ☐ ☐ ☐ ☒

c) Conflict with any applicable habitat conservation plan or natural community conservation plan? ☐ ☐ ☐ ☒

Background:

The project site is bounded to the north and west by the East Bay Regional Park District’s Point Pinole Regional Shoreline park and Union Pacific Railroad tracks (followed by San Pablo Bay) and to the west by industrial warehouse buildings within Pinole Point Business Park. To the south are existing and proposed industrial buildings, with the Country Club residential area located approximately 1,300 feet further to the south and to the east is light industrial and open space uses.

Discussion:

a. Division of Community – No Impact. The project proposes an industrial warehouse use on a site that has historically been used for an industrial land use and is in an area surrounded on three sides by existing and proposed industrial and commercial uses. The project would not physically divide an established community.

b. Plan Conflict – Less Than Significant Impact. The project site is currently zoned as M3, Heavy Industrial, with a General Plan Designation of Business/Light Industrial. The project site is subject to the North Richmond Shoreline Specific Plan (Plan), under which the site is designated as Heavy Industrial. This Plan was adopted in 1993 by the City of Richmond, Contra Costa County, and the State Coastal Conservancy. The project would be consistent with applicable land use plans and the base zoning district.

c. Habitat Plan Conflict - No Impact. No habitat conservation plans or natural community conservation plans apply to the project site, and there would be no impact on such plans.
XI. MINERAL RESOURCES – Would the project:

a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state? ☒ ☐ ☐ ☐

b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan? ☒ ☐ ☐ ☐

Background:

There are no known mineral resources on the site and the site is not shown as a mineral resource recovery site in the City’s General Plan.

Discussion:

a. and b. Mineral Resources - No Impact. The site contains no known mineral resources. The Open Space and Conservation Element of the City of Richmond General Plan does not identify any mineral resources in the vicinity of the project.
XII. NOISE - Would the project result in:

<table>
<thead>
<tr>
<th>Category</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>b) Exposure of persons to or generation of excessive ground-born vibration or ground-born noise levels?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
</tbody>
</table>

Background:

Noise is typically defined as unwanted sound. Noise levels that are generally considered acceptable or unacceptable can characterize various environments. Lower levels are expected in rural or suburban areas than what would be expected for commercial or industrial zones. The A-weighted decibel scale (dBA)\(^6\) is cited in most noise criteria. The most commonly used noise descriptors are the equivalent sound level over a given time.

\(^6\) A decibel (dB) is a unit of sound energy intensity. Sound waves, traveling outward from a source, exert a sound pressure level (commonly called "sound level") measured in dB. An A-weighted decibel (dBA) is a decibel corrected for the variation in frequency response to the typical human ear at commonly encountered noise levels.
The primary existing noise sources in the project area are vehicle traffic on Richmond Parkway and San Pablo Avenue, trains on the Union Pacific railroad tracks, and noise produced at nearby industrial uses. The nearest sensitive receptors to the project site would be the users of the East Bay Regional Park District’s Point Pinole Regional Park.

7 The Equivalent Sound Level (Leq) is a single value of a constant sound level for the same measurement period duration, which has sound energy equal to the time–varying sound energy in the measurement period.

8 Ldn is the day–night average sound level that is equal to the 24–hour A–weighted equivalent sound level with a ten–decibel penalty applied to night between 10:00 p.m. and 7:00 a.m.

9 CNEL is the average A–weighted noise level during a 24–hour day, obtained by addition of five decibels in the evening from 7:00 to 10:00 p.m., and an addition of a ten–decibel penalty in the night between 10:00 p.m. and 7:00 a.m.
Shoreline park and trail to the north and west, and the Country Club residential area located approximately 1,300 feet further to the south.

The noise section of the Public Safety and Noise Element of the City of Richmond General Plan seeks to ensure that noise levels are consistent with acceptable standards. The Element’s Table 12.1 Noise Exposure Land Use Compatibility Standards sets thresholds of significance for these effects, using the State of California General Plan Guidelines. City of Richmond noise standards are also found in the City’s Municipal Code Section 15.04.840.020. The Code limits noise from industrial activities to 75 dBA, as measured at the boundary of the district, which is a level not to be exceeded more than 30 minutes out of an hour. The code also limits noise from industrial activities to 65 dBA, as measured at any boundary of Residential Zone, which is also a level not to be exceeded more than 40 minutes out of an hour. In addition, the maximum noise level, as measured in dBA, not to be exceeded more than five minutes in any hour, between 10:00 p.m. and 7:00 a.m., measured at any boundary of a Residential Zone is 50 or at the ambient noise level.

Goal SN4 of the Public Safety and Noise Element is “Acceptable Noise Levels” and under Policy SN4.1 states “Noise Levels. Work with regulatory agencies to monitor and enforce noise standards in the community. Reduce or mitigate objectionable noise sources and require new noise sources to comply with noise standards. Regulate both indoor and outdoor noise levels to protect health and safety. Use a combination of noise standards and existing noise levels to determine impacts and mitigation measures.”

The City of Richmond Municipal Code Section 9.52.110, Temporary Construction Activity, requires that “where technically and economically feasible” mobile equipment shall not exceed 85 dBA weekdays 7:00 a.m. to 7:00 p.m. and 70 dBA on weekends, including legal holidays between 9:00 a.m. and 8:00 p.m. For stationary construction equipment, the maximum sound levels shall be 70 dBA weekdays, 7:00 a.m. to 7:00 p.m. and 65 dBA weekends, including legal holidays 9:00 a.m. to 8:00 p.m.

Municipal Code Section 9.52.040 states that “It shall be unlawful for any person, corporation, firm or association to make, create or continue, or cause, permit, maintain, or suffer to be made or continued, any loud, raucous, unnecessary, and unusual noise which disturbs the peace or quiet of any neighborhood or which causes discomfort or annoyance to any reasonable person of normal sensitiveness residing in the area or that exceeds the maximum dBA levels set forth herein or that violates any provision of this Chapter.”

Discussion:

a, b, d. Exposure to Noise or Vibration – Less Than Significant With Mitigation.

Construction Noise

Project construction would be completed in one phase lasting for approximately 12 months. This analysis assumes that construction would be limited to daytime hours between 7 a.m. and 7 p.m. Construction activities would require the use of numerous
pieces of noise-generating equipment, such as excavating machinery (e.g., backhoes, bulldozers, excavators, trenchers, front loaders, etc.) and other construction equipment (e.g., compactors, scrapers, graders, etc.). Construction worker traffic and construction-related material haul trips would raise ambient noise levels along local haul routes, depending on the number of haul trips made and types of vehicles used. Construction activities would occur primarily during the daytime, increasing the ambient noise levels above existing conditions, which could be annoying to people at sensitive receptor locations in the area.

The noise levels generated by construction equipment would vary greatly depending upon factors such as the type and specific model of the equipment, the operation being performed, the condition of the equipment and the prevailing wind direction. The maximum noise levels for various types of construction equipment that would be required to build the project are provided in Table XII-7 below, Typical Noise Levels from Construction Equipment. The maximum noise levels from most of the Project’s construction equipment at 50 feet would be in the mid to high 80-dBA range.

The highest noise levels associated with construction activities typically occur during ground excavation and finishing (See Table XII-8). However, finishing activities would last much for a much longer time period than ground excavation activities. Table XII-8 gives average typical construction activities noise levels at 50 feet.

<table>
<thead>
<tr>
<th>Construction Equipment</th>
<th>Noise Level (dBA at 50 feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile Driver</td>
<td>101</td>
</tr>
<tr>
<td>Dump Truck</td>
<td>88</td>
</tr>
<tr>
<td>Portable Air Compressor</td>
<td>81</td>
</tr>
<tr>
<td>Concrete Mixer (Truck)</td>
<td>85</td>
</tr>
<tr>
<td>Scraper</td>
<td>88</td>
</tr>
<tr>
<td>Pump</td>
<td>76</td>
</tr>
<tr>
<td>Jackhammer</td>
<td>88</td>
</tr>
<tr>
<td>Dozer</td>
<td>87</td>
</tr>
<tr>
<td>Paver</td>
<td>89</td>
</tr>
<tr>
<td>Generator</td>
<td>76</td>
</tr>
<tr>
<td>Backhoe</td>
<td>85</td>
</tr>
</tbody>
</table>

Notes: dBA = A-weighted decibel; L_{max} = maximum sound level
Source: Federal Transit Administration, 2006
Table XII-8: Typical Construction Activities Noise Levels

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Noise Level (dBA Leq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Clearing</td>
<td>83</td>
</tr>
<tr>
<td>Excavation</td>
<td>88</td>
</tr>
<tr>
<td>Foundations</td>
<td>81</td>
</tr>
<tr>
<td>Erection</td>
<td>81</td>
</tr>
<tr>
<td>Finishing</td>
<td>88</td>
</tr>
</tbody>
</table>

Notes: Average noise levels correspond to a distance of 50 feet from the noisiest piece of equipment associated with a given phase of construction and 200 feet from the rest of the equipment associated with that phase.
dBA = A-weighted decibel; Leq = equivalent sound level
Source: U.S. Environmental Protection Agency, Legal Compilation, 1973

Construction activities associated with the Project would result in noise impacts to the residents of the adjacent properties. Noise from construction activities generally attenuates at a rate of 6.0 to 7.5 dBA per doubling of distance from the source. Where topography or physical structures obstruct the line of sight from the noise-producing equipment to the receptor location, noise levels would be further reduced (generally by at least 5 dBA). Construction of the Project would need to comply with the City’s construction regulations listed below.

City of Richmond Construction Noise Regulations

The City of Richmond’s Municipal Code lists the following construction regulations:

- Excavation, grading, and earthwork construction operations shall be controlled to prevent nuisances to public and private ownerships because of noise and/or vibration.

- Grading operations located within 500 feet of residential occupancies shall be limited to the hours between 8 a.m. and 5 p.m. Monday through Friday, or as approved by the Building Official, except that maintenance and service work on equipment may be performed until 9:00 p.m.

- Grading and pile driving operations within ¼ mile of residential units shall be limited to between 7 a.m. and 7 p.m., or as otherwise restricted as part of an approval.

- Use of pile drivers, sources of impulsive sound and jackhammers shall be prohibited on Sundays and holidays, except for emergencies or as approved in advance by the Building Official.

- All construction equipment powered by internal combustion engines shall be properly muffled and maintained.

- Unnecessary idling of internal combustion engines is prohibited.

- All stationery noise-generating construction equipment such as tree grinders and air compressors are to be located as far as is practical from existing residences.

- Quiet construction equipment, particularly air compressors, are to be selected whenever possible.
Additionally, the City of Richmond Community Noise Ordinance (Chapter 9.52) states that, where technically and economically feasible, maximum noise levels from temporary construction activity should not exceed the zoning district standards summarized in Tables XII-4 and XII-5.

The Project would be required to comply with the construction regulations included in the Richmond Municipal Code. This compliance would limit grading activities to the hours between 8 a.m. and 5 p.m. Monday through Friday, or as approved by the City’s Building Official, except that maintenance and service work on equipment may be performed until 9 p.m. All other construction activities would be limited to the hours between 7 a.m. and 7 p.m. Monday through Friday. However, even when restricted to the allowable construction hours, construction noise can still be a nuisance when conducted in close proximity to residential and commercial receptors. Some phases of construction could cause maximum noise levels to exceed the City of Richmond thresholds (Tables XII-4 and XII-5). Therefore, the noise impact from construction would be considered a significant short-term impact.

Implementation of Mitigation Measure XII-1 would reduce this impact to a less-than-significant level.

Mitigation Measure XII-1: The Project applicant shall implement technically and economically feasible measures construction noise control measures to reduce, as feasible, the noise levels generated by the use of construction equipment below the maximum noise level standards specified in Chapter 9.52.110 of the City of Richmond Municipal Code.

Operational Noise

After construction, project operations could produce noise through movement by trucks transporting products to be warehoused at the site or shipped from the site and through activities associated with moving products into and out of the trucks. Trucks accelerating from a stop at railway and roadway crossings also would produce noise.

The nearest sensitive receptors to the project site would be users of the East Bay Regional Park District’s Point Pinole Regional Shoreline Park and trail to the north and west, and residents of homes in the Country Club development located approximately 1,300 feet to the south of the site. The primary post-construction noise-producing activities that would occur on the project site would be from the loading and movement of trucks that would park at the north and south sides of the building.

The trail and park users could experience noise from the project trucks as they walk on the trail, but the noise would be brief as they moved past the source and would not exceed compatibility standards. The residences would be expected to be shielded from the noise produced by loading activities by intervening buildings and the change in elevation.
As an industrial use proposed within an industrial area, the project would have a less-than-significant impact on increases in ambient noise levels in the project vicinity. The project is not expected to cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system. Trucks from the project would add incrementally to traffic noise on Atlas Road and Giant Highway; however, the project would not cause a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project.

Vibration

Groundborne vibration or groundborne noise levels can be an impact when there is major construction within 25 feet of any building or 100 feet of a historic building (Caltrans, 2002 and Caltrans, 2004). Buildings adjacent to the site are located more than 100 feet away from the property boundary and no historic buildings are located within 100 feet of the project site. Therefore, no significant impacts due to ground-borne vibration or noise would result from the project.

e. Public Airport Noise - No Impact. The closest public use airports to the project site are the Oakland International Airport, located in Oakland, approximately seventeen miles southeast of the project site and Buchanan Field in Concord, approximately fifteen miles east of the project site. Noise from those airports would not be audible at the site. Therefore, no impact would result.

f. Private Airport Noise - No Impact. There are no private airstrips in the site vicinity. Therefore, no impact would result.
XIII. POPULATION AND HOUSING – Would the project:

Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?

Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

Background:

The project site is zoned Industrial and the project would replace an earlier industrial use. No residences or infrastructure would be constructed as part of this project.

Discussion:

a. Population Growth - Less Than Significant Impact. The project is a mostly-developed industrial area, already served by roads and other infrastructure. No residential units are proposed as part of the project. It is not expected to have any growth-inducing effects.

b, c. Displace Housing or People – No Impact. The project site is industrial and would not displace any housing or people.
XIV. PUBLIC SERVICES:

a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities? The construction of which could cause significant environmental impacts in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:

i) Fire protection? ☐ ☐ ☒ ☐ ☐

ii) Police protection? ☐ ☐ ☒ ☐ ☐

iii) Schools? ☐ ☐ ☒ ☐ ☐

iv) Parks? ☐ ☐ ☐ ☒ ☐

v) Other public facilities? ☐ ☐ ☐ ☐ ☒

Background:

Fire Protection: Fire protection services for the project site are provided by the Richmond Fire Department (RFD). The RFD has a staff of 93 sworn personnel and four non-sworn personnel who are responsible for emergency medical services, fire suppression, mitigation of disasters, and rescue activities (City of Richmond Fire Department, accessed September 16, 2014.) The closest station to the project site is Station No. 68 located at 2904 Hilltop Drive, approximately 1.5 miles southeast of the site.

For fire protection services, the RFD goal is to respond to 85 percent of emergency calls in six minutes or less. The average response time for emergency calls is five minutes and for non-emergency calls is approximately seven or more minutes (City of Richmond Fire Department, Telephone Conversation, December 15, 2014.) The City of Richmond also has mutual aid agreements for exchange of fire, rescue, and emergency medical services with the Contra Costa County Fire Protection District, the City of Pinole Fire Department, and the City of Rodeo-Hercules Fire Department.

Police Protection: Police protection services for the project site are provided by the Richmond Police Department (RPD), which is headquartered at 1701 Regatta Boulevard. The RPD has 187 authorized sworn officers and 34 civilian personnel. Average response times in 2009 were 6 minutes and 43 seconds for Priority 1 calls and 14 minutes and 50
The RPD does not have response time standards or levels of service.

The RPD headquarters is located approximately 5 miles south of the project site. The project site is located within the Northern District (one of three police districts in the city), and within Beat 8 of the Northern District.

Schools: The school closest to the project site is Montalvin Manor Elementary School, located at 300 Christine Drive, unincorporated Contra Costa County, near the intersection of Richmond Parkway and San Pablo Avenue. Manzanita Middle Charter School is located at 2925 Technology Court, in the City of Richmond, at the intersection of Richmond Parkway and San Pablo Avenue.

Parks: The site is adjacent to East Bay Regional Park District’s Point Pinole Regional Shoreline. The park is a large natural area with scenic, multi-use trails through meadows, eucalyptus woods, bluffs and beaches.

Discussion:

i) **Fire Protection.** *Less Than Significant Impact.* The warehouse project would replace a previous industrial use on the site and would be located within the urban limits of Richmond within the existing service area of the RFD. The proposed project is not expected to add residents to Richmond. The project would not preclude the RFD from meeting its service goals. The RFD would be able to continue to provide fire protection to the site and would not be required to construct new facilities or physically alter existing stations to serve the site. For these reasons, the impact on fire protection would be less than significant.

ii) **Police Protection.** *Less Than Significant Impact.* The warehouse project would replace a previous industrial use on the site and would be located within the urban limits of Richmond within the existing service area of the RPD. The project is not expected to affect the Police Department’s ability to provide service. For these reasons, the impact on police protection would be less than significant.

iii) **Schools.** *Less Than Significant Impact.* The proposed project would require approximately 400 employees on-site. These employees are anticipated to already be local residents, and therefore would not result in the need for new schools, require the construction of new school facilities, or compromise the service level of the school districts.

iv) **Parks.** *No Impact* - The proposed project would not result in the need for additional parks. As stated above, employees are likely to be hired from the area and the project is not expected to result in a significant number of people relocating to the service area.

10 Priority 1 calls are in progress emergencies such as shootings, robberies, burglaries and assaults. Priority 2 calls are immediate emergencies, but not in progress, where the suspect is no longer present.
project would include the dedication of a multi-purpose trail. A trail easement would be provided by the project with final construction and maintenance provided by the East Bay Regional Parks District. Therefore proposed Project would not result in a significant impact to parks.

v) Other public facilities. *No Impact.* The proposed project would not affect other public facilities by increasing demand beyond anticipated levels.
XV. RECREATION:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

- [] Potentially Significant Impact
- [] Less Than Significant Impact With Mitigation
- [x] Less Than Significant Impact
- [] No Impact

b) Does the project include recreational facilities or require the construction or expansion of recreational facilities, which might have an adverse physical effect on the environment?

- [] Potentially Significant Impact
- [] Less Than Significant Impact With Mitigation
- [] Less Than Significant Impact
- [x] No Impact

Background:

The site is adjacent to East Bay Regional Park District’s Point Pinole Regional Shoreline. The park is a large natural area with scenic, multi-use trails through meadows, eucalyptus woods, bluffs and beaches.

Discussion:

a. Increase Park Usage - Less Than Significant Impact. The project is an industrial warehouse development in an industrial area. No residential units are proposed as part of the project. Project employees may add incrementally to the use of Point Pinole Regional Park and associated trails, which are adjacent to the project site. This impact would be less than significant.

b. No Impact. The project would include provision of an easement and construction of a recreational trail segment adjacent to the site, for maintenance and management by the EBRPD. This trail would not have adverse impacts to the environment, as detailed in the technical analyses in this document.
XVI. TRANSPORTATION AND TRAFFIC – Would the project:

a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian, bicycle paths and mass transit?

b) Conflict with an applicable congestion management program, including but not limited to level of service demands and travel demand measures, or other standards established by the county congestion management agency for designated roads/highways.

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

e) Result in inadequate emergency access?

f) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)

Background:

This discussion is based on a traffic study prepared for the Project by PHA Transportation Consultants (PHA Transportation Consultants, September 2014). That report is included
as Appendix C to this report. To assess the potential project impact, PHA Transportation Consultants evaluated traffic operations for four key street intersections near the project site and the site access driveway for existing conditions, near-term conditions, project conditions, and 2030 cumulative conditions based on local traffic level-of-service (LOS) standards. LOS is a qualitative measure of traffic flows. It ranges from A to F; LOS A represents free-flow and LOS F represents jammed conditions.

The Project area is accessible from Atlas Road, Giant Highway in conjunction with, Richmond Parkway and San Pablo Avenue.

AC Transit (Alameda and Contra Costa Transit) provides public transit services via Line 71 and 376 to the study area and surrounding cities. Line 71 runs between El Cerrito Plaza BART to Richmond Parkway Transit Center via Carlson Blvd., Richmond BART, Rumrill Blvd., Contra Costa College, Parchester Village, Giant Highway, Atlas Rd., and Richmond Parkway. From El Cerrito Del Norte BART Station, weekday service begins at 5:00 a.m. and ends at Richmond Parkway Transit Center about 8:00 p.m. From Richmond Transit Center, weekday service begins at 5:45 a.m. and ends at El Cerrito BART Station about 8:45 p.m. Services are provided at about 30-minute intervals.

Line 376 is a non-commute hour line providing clockwise service El Cerrito Del Norte BART Station to Pinole Vista via Cutting Blvd., Richmond BART, North Richmond, Contra Costa College, Parchester Village, and Richmond Pkwy. It returns via Richmond Parkway Transit Center and Hilltop Mall. Service is provided at 30-minute intervals beginning about 8:20 a.m. and ending at about 3:55 p.m.

Pedestrian facilities generally include sidewalks, crosswalks, pedestrian signals and multi-use trails. In the vicinity of the project site, sidewalk is the only available pedestrian facility provided on Giant Highway along the Pinole Point Business Park frontage and along the entire length of the south side of Atlas Road between the project site and Richmond Parkway.

Existing bicycle facilities near the project site include a Class I bike path on the south side of Atlas Road, running between a point east of the railroad crossing and Richmond Parkway. There are also bike path/trails within the Point Pinole Regional Shoreline, which is immediately to the northwest of the proposed project site. The project proposes to include 105 bicycle parking spaces on the site for employees to encourage bicycle use.

Significance Criteria and Minimum LOS Standards

Significance criteria are used to determine whether a project impact is considered significant and therefore required mitigation. A proposed development project is considered to have a significant impact on the environment if it would cause an increase in traffic which is substantial in relation to the traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, or delay and congestion at intersections), or change the condition of an
existing street (e.g., street closures, changing direction of travel) in a manner that would substantially impact access or traffic load and capacity of the street system.

The City of Richmond does not have a Level-of-Service policy for vehicle traffic and intersection operation. For the purpose of this study, the following significant criteria were used in evaluating project impact on study intersections. These criteria are consistent with policies and standards established by Contra Costa Transportation Authority (CCTA) and cities in Contra Costa County.

• If a signalized intersection is projected to operate within expected delay ranges (i.e., LOS D or better with an average control delay of equal to or less than 55 seconds per vehicle) without the project and the project is expected to cause the intersection to operate at an unacceptable LOS (E or F);

• If an intersection is projected to operate at or over capacity (i.e., LOS E or F) without the project, and the project is expected to increase the average control delay by more than 5 seconds; or

• If the operations of a non-signalized study intersection is projected to decline with the addition of Project traffic, and if the installation of a traffic signal based on the Manual on Uniform Traffic Control Devices (MUTCD) Peak Hour Signal Warrant (Warrant 3) would be warranted.

In addition to the above local criteria, the California Environmental Quality Act (CEQA) has a broad set “Significant Impact” criteria and guidelines for evaluating development project impacts.

Discussion:

Current Conditions

The intersections of Atlas Road and Giant Highway, and Richmond Parkway and Giant Highway Ramps, currently operate at LOS A and B, indicating that there are only short delays in these locations. The intersection of Atlas Road and the site access driveway also operates at LOS A since there is no traffic using the driveway currently, except a small amount of truck traffic associated with the demolition of the current industrial buildings. The two Richmond Parkway intersections at Atlas Road and San Pablo Avenue operate at LOS C and D. Traffic is heavier at those intersections than other study intersections since both are major arterial streets and must carry a large amount of commuter traffic. The Richmond Parkway intersection at Atlas Road operates adequately during both a.m. and p.m. peak periods. However, while traffic backs up from time to time at the San Pablo Avenue intersection, vehicle queues generally dissipated quickly.
Overall, the calculated LOS results are consistent with observations from the field. Table XVI-1 shows study intersection current traffic.

It should be noted that while all study intersections operate at acceptable conditions, the right turn traffic movement from the shopping center to Richmond Parkway backs up frequently during the p.m. peak period. Adding a right-turn green arrow to the shopping center approach would help improve traffic operation. Field observation also indicated that there is a circulation problem in that area particularly during the p.m. peak period. Inbound traffic to the shopping center backs up to Richmond Parkway frequently due to the short spacing between Richmond Parkway and the internal intersection.

Traffic Impact Assessment Methodology

To identify the potential traffic impact of the proposed warehouse/distribution center project, PHA first evaluated current study intersection traffic Level-of-Service (LOS) to establish a baseline - "Existing Traffic Conditions". Then, traffic LOS for study intersections was evaluated again with the added trips from recently approved but not yet built projects to identify traffic impacts from the approved projects. Finally, PHA evaluated study intersection LOS, adding traffic from the proposed warehouse/distribution to the existing and approved projects conditions to identify project impacts.

For "Cumulative Traffic Conditions", PHA conducted study intersection traffic LOS first with traffic volume forecasts for 2030 obtained from the traffic model prepared CCTA (Contra Costa Transportation Authority to form the 2030 future baseline. Subsequently, traffic LOS for study intersections was evaluated again with the added project (Atlas Road Warehouse/Distribution Center) project trips to identify project traffic impacts under the cumulative 2030 conditions.

Traffic Impacts

As shown in Table XVI-2 below, the Project is not expected to increase traffic or have an adverse impact on existing traffic load and capacity of the access roads or the surrounding street system. The project site would be accessible from Atlas Road, off of Giant Highway in conjunction with, Richmond Parkway and San Pablo Avenue. All of the study intersections are expected to operate at the same LOS with and without the project under project conditions. Project impacts on study intersection delays would be less than 5 seconds. Therefore, the Project would have a less-than-significant impact on existing traffic patterns and conditions.
<table>
<thead>
<tr>
<th>Study Intersections</th>
<th>Peak Period</th>
<th>Existing Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>1 Giant Rd./Atlas Rd.</td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>(all-way stop)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Richmond Pkwy./Atlas Rd.</td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>(signalized)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 San Pablo Ave./Richmond Pkwy.</td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>(signalized)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Giant Rd./Richmond Pkwy. Ramps</td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>(signalized)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Site Driveway/Atlas Rd.</td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>(all-way stop)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHA evaluated existing traffic operations with traffic counts collected from the field during rush hour periods (7-9 am and 4-6 pm) in August, 2014, when schools were back in session. Study intersection traffic LOS was calculated using the methodology discussed in the 2000 Highway Capacity manual using SYNCHRO computer software. For signalized intersections, delays and LOS represent the average delays for the intersection as a whole. For side street stop control intersections, the delays and LOS are for the side street traffic with the highest traffic volumes. Traffic from main street approaches without traffic control are assumed operating at LOS A. Delay is measured in second per vehicle, LOS=Level-of-Service.
Table XVI-2 - Study Intersection LOS Analysis –Approved Projects + Project Conditions
Atlas Road Warehouse/Distribution Center Traffic Study –Richmond

<table>
<thead>
<tr>
<th>Study Intersections</th>
<th>Peak Period</th>
<th>Existing Conditions</th>
<th>Approved Projects Conditions</th>
<th>Approved Projects+ Project Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
<td>Delay</td>
</tr>
<tr>
<td>1 Giant Rd./Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
<td>A</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
<td>A</td>
<td>7.0</td>
</tr>
<tr>
<td>2 Richmond Pkwy./Atlas Rd. (signalized)</td>
<td>AM</td>
<td>18.4</td>
<td>B</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>25.3</td>
<td>C</td>
<td>27.9</td>
</tr>
<tr>
<td>3 San Pablo Ave./Richmond Pkwy. (signalized)</td>
<td>AM</td>
<td>34.7</td>
<td>D</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>49.9</td>
<td>D</td>
<td>50.5</td>
</tr>
<tr>
<td>4 Giant Rd./Richmond Pkwy. Ramps (signalized)</td>
<td>AM</td>
<td>13.3</td>
<td>B</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>12.3</td>
<td>B</td>
<td>12.4</td>
</tr>
<tr>
<td>5 Site Driveway/Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
<td>A</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
<td>A</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Study intersection traffic LOS was calculated using the methodology discussed in the 2000 Highway Capacity Manual using SYNCHRO computer software. For signalized intersection, delays and LOS represent the average delays for the intersection as a whole. For side street stop control intersections, the delays and LOS are for the side street traffic with the highest traffic volumes. Traffic from main street approaches without traffic control operates at LOS A. Delay is measured in second per vehicle, LOS=Level-of-Service.

b. Conflict with Congestions Management Program – Less Than Significant with Mitigation.

To identify project traffic for the 2030 conditions, PHA first conducted traffic LOS analyses for the study intersections to form a future baseline. The 2030 traffic LOS analysis was conducted with the traffic volume forecasts from the Countywide Traffic Model developed by CCTA, which predicts future travel patterns for the region based on population and economic growth projections for the Contra Costa County Area. Subsequently, intersection LOS was evaluated again with the added traffic from the proposed warehouse/distribution center to identify project impact.
Table XVI-3 shows a summary of study intersection traffic LOS analyses, along a comparison with existing conditions, approved projects conditions and project conditions. As indicated, two of the study intersections, Richmond Parkway at San Atlas Road and San Pablo Avenue would operate at LOS F, while the other three intersections would operate at acceptable conditions LOS C or better.

The traffic analysis results indicated that all study intersections currently operate at LOS D or better for both a.m. and p.m. peak hours and would continue to operate at the same service levels for the project condition. However, two of the study intersections would operate at LOS F by 2030 due to region wide growth projection – Richmond Parkway/Atlas Road in the p.m. peak time period and San Pablo Avenue/Richmond Parkway at morning a.m. and p.m. peak time periods. No street or intersection improvements are available that would reduce this impact to a less-than-significant level, therefore any mitigation would need to incorporate improved transportation system management, public transportation service to the area, and changes in traffic generation/peak hour roadway usage that would reduce peak-hour traffic at these two intersections.

The following mitigation measures would reduce this impact to less than significant.

Mitigation Measure XIV - 1: The project applicant shall coordinate with other businesses within the Pinole Business Park to jointly develop a Transportation Demand Management program (TDM) to facilitate shuttle service, offer alternative work schedules, and encourage carpooling and alternative transportation modes such as bicycles and public transit. A TDM program that utilized a combination of the proposed methods for reducing employee traffic would reduce the proposed project site traffic by 25% would minimize the project impact to a less than significant level.

Mitigation Measure XIV -2: The project applicant shall register with 511ContraCosta.org to receive ongoing information about transportation alternatives and incentives for the employers and employees.

TDM (Transportation Demand Management) programs are designed to reduce traffic congestion fuel consumption and air pollution. It is recommended that the project sponsor for the Atlas Road Warehouse/Distribution Center coordinate with other employers at the Pinole Business Park to jointly develop and run the TDM program for the benefit of the entire business park. A TDM program for the proposed Atlas Road Warehouse/Distribution Center could include the following strategies:

Transportation Coordinator. Designate a transportation coordinator on the site to provide trip planning and assistance to commuters. The presence of an on-site coordinator can make it easier to obtain information about alternatives to single-occupancy vehicle commutes.

On-Site Transit Information and Pass Sales. Providing transit information on-site can serve to encourage people to use transit. Convenient purchase of transit
passes may also facilitate the use of transit. In addition, on-site sales could include discounts for transit passes.

Rideshare Matching Services. Rideshare matching services put compatible commuters in touch with one another to enable carpooling. Employers can facilitate formation of ridesharing arrangements by employees in a number of ways, ranging from simple in-house employee match listings to computerized matching programs. These services may be unique to the given employer or can pool matching candidates from a larger area ranging from multiple employers in a building or complex to large regional matching systems.

Guaranteed Ride Home. Guaranteed ride home programs provide backup transportation to employees who rideshare or use transit if they need to return home suddenly for an emergency or if they must work late and therefore cannot connect with the mode they used to travel to the site on that day. Generally, these programs provide vouchers for the person to travel home by taxi, although some employers permit use of company vehicles as well.

Preferential Parking. Employers may set aside reserved parking spaces as an incentive to carpool or vanpool. This is a non-monetary benefit that can be an important incentive if parking is tight or if the parking lot is large and the reserved spaces are near the building entrance. Reserved spaces may also be sheltered versus outdoors, lessening the impact of severe weather.

Bicycle Storage, Lockers, and Changing Facilities. Changing facilities and showers and secure bicycle parking are key features for an employer or institution interested in encouraging bicycle use. Such facilities may be combined with an exercise facility and may encourage healthy habits.

Shuttle Bus Services. Some employers choose to operate shuttle bus services to provide easy connections with nearby rapid transit services or other important facilities. Shuttle services may be an individual employer effort or a collective effort of a few sites and employers. In some instances, shuttles are also used for local circulation during the midday, lessening the need to bring a personal vehicle to the job site.

Transit Subsidies. Employers can reduce the cost of taking transit by offering prepaid or discounted transit passes to employees who agree to commute by transit. This benefit can vary from a modest share of the actual cost to full absorption of the cost.

Flexible Work Hours. Flexible work hours are programs allowing employees a degree of freedom in choosing their starting and ending times.
Table XVI-3 - Study Intersection LOS Analysis Summary

Atlas Road Warehouse/Distribution Center Traffic Study – Richmond

<table>
<thead>
<tr>
<th>Study Intersections</th>
<th>Peak Period</th>
<th>Existing Conditions</th>
<th>Approved Projects Conditions</th>
<th>Approved Projects+ Project Conditions</th>
<th>Cumulative 2030 Conditions</th>
<th>Cumulative 2030 + Project Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
<td>Delay</td>
<td>LOS</td>
<td>Delay</td>
</tr>
<tr>
<td>1 Giant Rd./Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
<td>A</td>
<td>6.9</td>
<td>A</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
<td>A</td>
<td>7.0</td>
<td>A</td>
<td>7.4</td>
</tr>
<tr>
<td>2 Richmond Pkwy./Atlas Rd. (signalized)</td>
<td>AM</td>
<td>18.4</td>
<td>B</td>
<td>18.8</td>
<td>B</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>25.3</td>
<td>C</td>
<td>27.9</td>
<td>C</td>
<td>32.3</td>
</tr>
<tr>
<td>3 San Pablo Ave./Richmond Pkwy. (signalized)</td>
<td>AM</td>
<td>34.7</td>
<td>D</td>
<td>36.0</td>
<td>D</td>
<td>37.6</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>49.9</td>
<td>D</td>
<td>50.5</td>
<td>D</td>
<td>50.7</td>
</tr>
<tr>
<td>4 Giant Rd./Richmond Pkwy. Ramps (signalized)</td>
<td>AM</td>
<td>13.3</td>
<td>B</td>
<td>13.3</td>
<td>B</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>12.3</td>
<td>B</td>
<td>12.4</td>
<td>B</td>
<td>12.5</td>
</tr>
<tr>
<td>5 Site Driveway/Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
<td>A</td>
<td>6.8</td>
<td>A</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
<td>A</td>
<td>6.8</td>
<td>A</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Study intersection traffic LOS was calculated with the methodology discussed in the 2000 Highway Capacity Manual using SYNCHRO computer software. For signalized intersection, delays and LOS represents the average delays for the intersection as a whole. For side street stop control intersections, the delays and LOS are for the side street traffic with the highest traffic volumes. Traffic from main street approaches without traffic control generally operates at LOS A. Delay is measured in second per vehicle, LOS=Level-of-Service.

With an employer sponsor TDM program, p.m. peak delays can be reduced to 105.5 seconds, less than 5 seconds significant impact threshold.
Staggered Work Hours. Staggered work hours are fixed scheduling of work that normally spreads the employee starting and ending times over a one- to three-hour period, with individual groups of employees designated to report and leave at 15 to 30 minute intervals. Staggered work hours are generally employed in large facilities, especially manufacturing, where work schedules are otherwise regular.

c. **Air Traffic Levels - No Impact.** The Project would not result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks. Therefore, there is no impact on air traffic from the Project.

d. **Hazards - Less Than Significant Impact.** The Project would not create any hazards due to design features on the adjacent street system. All of the proposed driveways would have adequate sight distance and are expected to operate at acceptable LOS C or better under project conditions and 2030 cumulative conditions.

e. **Emergency Access - Less Than Significant Impact.** The project would use existing driveway on Atlas Road and would not create new access driveways. The existing driveway would provide adequate access to and the site and would operate at LOS A for project conditions and cumulative conditions and without sight distance restrictions.

f. **Adopted Plans Supporting Alternative Transportation - Less Than Significant Impact.** The project would not conflict with city policies supporting alternative transportation. The proposed project would not affect existing sidewalks and bus stops near the project site. The impact to alternative transportation plans would be less than significant.
XVII. UTILITIES AND SERVICE SYSTEMS – Would the project:

a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board? ☐ ☐ ☒ ☐

b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities; the construction of which could cause significant environmental effects? ☐ ☐ ☒ ☐

c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities; the construction of which could cause significant environmental effects? ☐ ☐ ☒ ☐

d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed? ☐ ☐ ☒ ☐

e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments? ☐ ☐ ☒ ☐

f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs? ☐ ☒ ☐ ☐

g) Comply with federal, state, and local statutes and regulations related to solid waste? ☐ ☐ ☒ ☐

Background:

The project is within an urban area already served by existing public services, as summarized below.
Wastewater

Wastewater from the project area is treated at the West County Wastewater District’s Water Pollution Control Plant (WPCP) at 2377 Garden Tract Road in Richmond. Wastewater treatment facilities such as the WWTP have a permit to discharge their wastewater. Pursuant to the federal Clean Water Act and California’s Porter-Cologne Water Quality Control Act, the San Francisco Bay Regional Water Quality Control Board (RWQCB) regulates wastewater discharges to surface waters, such as the San Francisco Bay, through a NPDES program. The RWQCB also requires waste discharge requirements (WDRs) for some discharges in addition to those subject to NPDES permits. Wastewater permits contain specific requirements that limit the pollutants in discharges. As required by the RWQCB, the WPCP monitors its wastewater to ensure that it meets all requirements. The RWQCB routinely inspects treatment facilities to ensure permit requirements are met. Sewage from the proposed project would be treated at the WPCP in accordance with their existing NPDES permit. The sewage generated by the project would not exceed the wastewater treatment requirements of the RWQCB. The project would have a less-than-significant impact on wastewater treatment requirements.

Water

Water service to the project site is provided by the East Bay Municipal Utilities District (EBMUD), which has water rights to the Mokelumne River that allow for delivery of up to 325 million gallons per day (mgd) of potable water. EBMUD also operates five terminal reservoirs in its service area, which contribute between 15 to 25 mgd during normal hydrological years. The Water Supply Management Program 2040 (WSMP 2040) projects water demand in the EBMUD service area to increase from 214 mgd in 2005 to 230 mgd in 2040. The WSMP 2040 also found that EBMUD would be unable to meet water demands in its service area during severe droughts. Multiple water projects are now underway that will expand EBMUD capacity for dry years. EBMUD also provides tertiary-treated wastewater, or recycled water, in the City of Richmond and throughout the East Bay.

Stormwater

The City of Richmond owns and manages most storm drains in the project area and ensures that they are designed and constructed to meet existing and projected needs for the area to avoid flooding. Stormwater from the project site drains to San Pablo Bay via a storm drain located at the terminus of Atlas Road.

Solid Waste

The City of Richmond is part of the West Contra Costa Integrated Waste Management Authority (WCCIWMA), now known as RecycleMore. Solid waste and recycling collection services in the project area are provided by Richmond Sanitary Services, an affiliate of Republic Services, Inc. Much of the garbage from the City is sent to the Potrero Hills Landfill in Solano County via the Golden Bear Transfer Station. As needed, RecycleMore also sends solid waste to landfills throughout the greater San Francisco Bay region including Newby Island Sanitary Landfill in Milpitas and the Altamont Landfill in Livermore. The Potrero Hills Landfill has a permitted capacity of 4,330 tons/day and a total permitted capacity of 83.1 million cubic yards. The landfill has an estimated life of 34 years, after a recently concluded approval process for an expansion. (Approval of the expansion was the subject of litigation that was recently resolved in favor of the expansion.12)

According to the Richmond General Plan EIR, implementation of the General Plan would produce 55,796 tons of solid waste in 2030, an increase of 12,662 tons over 2005 levels.

Discussion:

a. Exceed Wastewater Treatment Requirements - Less Than Significant Impact. The building would be developed as a warehouse/light manufacturing facility with all interior improvements deferred to future Tenant Improvement permits. In the future, restroom facilities would be provided by the tenant that occupies the building. The project’s sanitary sewage is not expected to exceed the Regional Water Quality Control Board (RWQCB) wastewater treatment requirements, due to compliance with regulations. The impact would be less than significant.

b. Exceed Water or Wastewater Treatment Facility - Less Than Significant Impact. Tenant improvements would be required to meet or exceed current water conservation requirements and would include low flow and US EPA Water Sense labeled plumbing fixtures. Average base wastewater flow for an office use is 0.1 gallons per day/square foot. (Alameda Point Master Infrastructure Plan, 2014.) The project proposes 40,000 square feet of office space and would then generate a usage of 4,000 gallons per day. The West County Wastewater District completed a Master Plan and Environmental Impact Report in August that is currently undergoing public review (West County Wastewater District-Wide Master Plan DEIR, August 2014.) The Master Plan presents a recommended Capital Improvement Plan for the next 20 years that identifies improvements and enhanced efficiencies. The project is not expected to exceed the capacity of the treatment facility.

c. New Stormwater Facilities - **Less Than Significant Impact.** The City of Richmond owns and manages most storm drains in the project area and ensures that they are designed and constructed to meet existing and projected needs for the area to avoid flooding. The additional service required would not result in the construction of new facilities which could cause significant environmental effects.

d. Water Supplies - **Less Than Significant Impact.** Future tenant improvements would include restrooms and possibly other water uses by employees and tenants. The project would be required to meet or exceed current water conservation requirements and would include low flow and US EPA Water Sense labeled plumbing fixtures. As discussed above, EBMUD would provide water service for the site and would have adequate capacity to serve the site. The proposed project would be consistent with the General Plan and would include low-flow plumbing fixtures. The project's landscape plans would comply with the California Water Efficient Landscape Ordinance (WELO, California Government Code 65595). The project would connect to existing water service and would not result in significant environmental impacts. For these reasons, the proposed project would result in a less-than-significant impact on water service and supply.

e. Wastewater Service - **Less Than Significant Impact.** Future tenant improvements of restrooms would be required to meet or exceed current water conservation requirements and would include low flow and US EPA Water Sense labeled plumbing fixtures. Impacts would be less than significant. As discussed above, the project is not expected to exceed the capacity of the treatment facility.

f. Landfill Capacity – **Less Than Significant With Mitigation.** The City of Richmond is part of the West Contra Costa Integrated Waste Management Authority (WCCIWMA), now known as RecycleMore. Solid waste and recycling collection services in the project area are provided by Richmond Sanitary Services, an affiliate of Republic Services, Inc. Much of the garbage from the City is sent to the Potrero Hills Landfill in Solano County via the Golden Bear Transfer Station. As needed, RecycleMore also sends solid waste to landfills throughout the greater San Francisco Bay region including Newby Island Sanitary Landfill in Milpitas and the Altamont Landfill in Livermore. The Potrero Hills Landfill has a permitted capacity of 4,330 tons/day and a total permitted capacity of 83.1 million cubic yards. The landfill has an estimated life of 34 years, after a recently concluded approval process for an expansion. (Approval of the expansion was the subject of litigation that was recently resolved in favor of the expansion.13)

According to the Richmond General Plan EIR, implementation of the General Plan would produce 55,796 tons of solid waste in 2030, an increase of 12,662 tons over 2005 levels. Using the General Plan solid waste generation rate of 0.42 tons of solid waste per resident

per year and an estimated on-site population of 648, the proposed project would generate approximately 272 tons of waste per year (City of Richmond, Richmond General Plan 2030, FEIR.) The proposed project would be consistent with the General Plan, which found that the Bay Area landfills have adequate capacity to meet the City’s increasing demand for solid waste facilities, therefore, the proposed project would be served by a landfill with adequate capacity.

Projections of growth in solid waste disposal at Potrero Hills Landfill include future waste generated in the City of Richmond. Although solid waste generated by the construction and operation of the proposed project would be relatively small in comparison to the total quantities disposed, landfill disposal capacity is a diminishing resource that is difficult and expensive to expand or develop at new sites, and project-generated waste would contribute to the exhaustion of the capacity of the Potrero Hills Landfill and/or other regional landfills. Furthermore, the City of Richmond, as are all jurisdictions in California, is legally obligated to divert 50 percent of the waste stream from disposal. This would be a potentially significant impact on landfill capacity, which would be reduced to a less than significant level by implementation of the following mitigation measures.

Mitigation Measure XVI-2: Recycling Plan for Construction
Prior to the initiation of project construction, the project sponsor shall prepare a recycling plan to cover all phases of project construction. The recycling plan shall identify a strategy for handling all waste materials that will be generated during construction, in order to divert a minimum of 50 percent by weight. The project sponsor shall provide a summary report of the diversion to the City.

Mitigation Measure XVI-3: Recycling Spaces within Office Space
The project sponsor shall provide space within the office space sufficient to conveniently accommodate standard recycling containers for the collection and storage of separated recyclable materials, including glass, paper, plastic, and tin/aluminum cans.

g. **Solid Waste Statutes and Regulations - Less Than Significant Impact.** The project site is served by existing RecycleMore waste and recycling collection services. The proposed project would be required to comply with all laws and regulations pertaining to solid waste. Implementation of the mitigation measures XVI-2 and XVI-3, above would reduce this impact to a less-than-significant level.
XVIII. MANDATORY FINDINGS OF SIGNIFICANCE:

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant With Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory?

b) Does the project have impacts that are individually limited, but cumulatively considerable? (“Cumulatively considerable” means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?

Discussion:

a) **Less Than Significant with Mitigation.** As discussed in the Biology Section of this document, with the incorporation of mitigation measures, the project would not have the potential to degrade the quality of the environment, substantially reduce the habitat of fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal. Mitigation measures have been included to reduce the impacts to unidentified cultural resources to less-than-significant.

b) **Less Than Significant with Mitigation.** Cumulative impacts of the project and other planned, approved, or reasonably foreseeable projects have been assessed in this Initial Study. Based on information provided by City staff, there is one previously approved but not yet completed project, Sponsor Properties, a warehouse/distribution center type project located also within the Pinole Point Business Park. The project consists of four buildings with a total of 632,615 square feet of space. At the time of this study, only one building with 117,200 square feet is completed and occupied by Whole foods. The remaining three buildings would total 515,415 square feet when complete.
The project would contribute incrementally to cumulative air pollutant emissions, traffic, and noise. Project-related air quality emissions would be below the BAAQMD significance thresholds (for construction ROG emissions, with implementation of Mitigation Measure III-1) and the Project would not make cumulatively considerable contributions to the Bay Area’s regional problems with ozone or particulate matter. Thus, by complying with the regional air quality plan, cumulative air quality emission impacts of the project would be less than significant.

The traffic analysis results indicated that two of the study intersections would operate at LOS F by 2030 due to region wide growth projections – Richmond Parkway/Atlas Road in the p.m. peak time period and San Pablo Avenue/Richmond Parkway at a.m. and p.m. peak time periods. No street or intersection improvements are available that would reduce this impact to a less-than-significant level, therefore any mitigation would need to incorporate improved transportation system management, public transportation service to the area, and changes in traffic generation/peak hour roadway usage that would reduce peak-hour traffic at these two intersections. Mitigation measures were identified in this IS which would reduce this cumulative impact to less than significant.

As an industrial use proposed within an industrial area, the project would have a less-than-significant impact on increases in ambient noise levels in the project vicinity. The project is not expected to cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system. Trucks from the project would add incrementally to traffic noise on Atlas Road and Giant Highway; however, the project would not cause a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project. When truck traffic amounts are combined from this project, existing traffic, and proposed industrial-related truck trips, noise impact thresholds for sensitive receptors along roadways are not expected to be exceeded. The project would not result in cumulatively considerable noise impacts and, therefore, no significant cumulative noise impacts are expected.

c) **Less Than Significant Impact.** As discussed in Section VIII. Hazards and Hazardous Materials, the project would follow all laws and regulations involving the use and transport of hazardous materials and would not cause potential health risks to the public.
E. REPORT PREPARERS

City of Richmond
 Jonelyn Whales, Senior Planner

Grassetti Environmental Consulting, Inc.
 Richard Grassetti, Principal
 Leann Taagepera, Environmental Planner
 Pang Ho Associates, Traffic Consultant
 Geoff Hornek, Air Quality Consultant
 Tom Camara, Graphic Consultant
F. REFERENCES

Publications:

Baseline Environmental Consulting, Point Pinole Mixed Use Development Project

Bay Area Air Quality Management District, Bay Area Climatology

__________, Source Inventory of Bay Area Greenhouse Gas Emissions: Base Year 2007, Updated: February 2010,

__________, California Environmental Quality Act Air Quality Guidelines, May, 2011 (Revised).

__________, Annual Bay Area Air Quality Summaries,

__________, County Surface Street Screening Tables, May 2011.

California Air Pollution Control Officers Association, Greenhouse Gas Exchange,

California Department of Transportation, Scenic Highways Program,

__________ Transportation Related Earthborne Vibrations, prepared by the Division of Environmental Analysis, Office of Noise, Air Quality, and Hazardous Waste Management, 2002.

City of Alameda, Alameda Point Master Infrastructure Plan, March 31, 2014.

_________, General Plan 2030, Map 7.1 Floodplains and Watersheds.

_________, General Plan 2030 Final Environmental Impact Report, August 2011.

_______, 2005 Greenhouse Gas Emissions Inventory, February 2009,
http://www.ci.richmond.ca.us/DocumentCenter/Home/View/4279, accessed September,
2014.

accessed September, 2014.

Environ, Environmental Summary, Former Steelscape Facility, 2995 Atlas Road,
Richmond, California, November, 2013.

_______, Refinement of Operational GHG Emissions Inventory and Potential Mitigation
Options for the Proposed Atlas Road Warehouse/Distribution Center, December 1,
2014.

PHA Transportation Consultants, Atlas Road Warehouse/Distribution Center Traffic Impact
Study, for City of Richmond, September 2014.

PG&E-MCE Joint Rate Comparisons. E-20S/COM-20S,

_______Biological Analysis Report, Former Richmond Steelscape Facility, July 2014.

_______Stormwater Pollution Prevention Plan/SWPPP, Steelscape Facility Demolition,
2995 Atlas Road, City of Richmond, CA including Contingency Sampling and Analysis

University of California at Berkeley, Renewable & Appropriate Energy Laboratory,

West County Wastewater District, District Wide Master Plan Draft Environmental Impact
Report, August 2014.

Persons Referenced:

Ms. Alison Kirk, Senior Environmental Planner, Bay Area Air Quality Management District,
Email Communication, August 12, 2014.

Mr. Michael Banks, Fire Chief, City of Richmond Fire Department, telephone conversation,
December 15, 2014.
Appendix A: Traffic Analysis
Atlas Road
Warehouse/Distribution Center
Traffic Impact Study
For
City of Richmond
October 2014

PHA Transportation Consultants
2711 Stuart Street Berkeley, CA 94705
(510) 848-9233
Atlas Road
Warehouse/Distribution Center

Traffic Impact Study

For

City of Richmond
October 2014
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... Page 1

1. INTRODUCTION ... 3
 1.1 Project Description .. 3
 1.2 Scope of Study ... 3
 1.3 Report Organization .. 5

2. STUDY AREA DESCRIPTION ... 6
 2.1 Land Use .. 6
 2.2 Street Network and Access ... 6
 2.3 Transit Service .. 7
 2.4 Bicycle and Pedestrian Facilities ... 9

3. TRAFFIC IMPACT ANALYSIS ... 10
 3.1 Study Approach and Assumptions .. 10
 3.2 Traffic (LOS) Analysis Methodology and Evaluation Criteria 10
 3.3 Significant Impact Definitions and Minimum LOS Standards 11
 3.4 Current Traffic Conditions (LOS) .. 12
 3.5 Project Conditions and Traffic Impact ... 15
 3.6 Cumulative (2040) Traffic Conditions and Project Impact 16
 3.7 Mitigation Considerations ... 23

4. CEQA REVIEW ... 27
 4.1 CEQA Significant Impact Criteria .. 27
 4.2 CEQA Impact Discussion ... 28

5. MITIGATION ... 29
 5.1 Mitigation Considerations ... 29

6. SITE PLAN REVIEW .. 30
 6.1 Project Site Plan Description .. 30
 6.2 Site Access, Internal Circulation and Parking ... 30
Table of Contents - Continue

List of Figures

- Figure 1 Project Location Map .. Page 4
- Figure 2 Study Area Public Transit service .. 8
- Figure 3 Current Condition Peak Hour Traffic Volumes and Lane Configurations 14
- Figure 4 Approved Projects Conditions Traffic Volumes and Lane Configurations 17
- Figure 5 Project Traffic Distribution Assumptions .. 20
- Figure 6 Project Conditions Peak Hour Volumes and Lane Configurations 22
- Figure 7 2030 Cumulative Conditions Traffic Volumes and Lane Configurations 25
- Figure 8 2030 Cumulative plus project Traffic Volumes and Lane Configurations 26
- Figure 9 Project Site Plan .. 31

List of Tables

- Table 1 Traffic Operation Ranking (LOS) Criteria .. Page 11
- Table 2 Existing Conditions Traffic Operation (LOS) .. 13
- Table 3 Approved Project Traffic Operation (LOS) .. 16
- Table 4 Project Trip Generation Analysis .. 18
- Table 5 Project Conditions Traffic Operation (LOS) .. 21
- Table 6 Cumulative Conditions Traffic Operation (LOS) .. 24
- Table 7 CEQA Project Impact Assessment .. 27

Appendix (under separate cover)

- LOS Calculations
- Traffic Count
Executive Summary

PHA Transportation Consultants has completed this report to evaluate the potential traffic impact for the proposed warehouse/distribution center to be located the 2995 Atlas Road. As proposed, the proposed warehouse/distribution center consists of 707,000 square feet of space and 427 parking spaces. The site was formerly occupied by two industrial buildings totaling about 460,000 square feet. Both buildings have been vacant for a long time and are expected to be demolished soon. Vehicle access to and from the site would be provided via an existing access driveway at the end of Atlas Road. AC transit provides public transportation service to the area as well as the project site via route 71 and route 376.

Project Traffic Generation and Potential Impacts

The proposed project is expected to generate 94 a.m. and 104 p.m. peak-hour trips, which is significantly lower than the trip generation for the two previous industrial buildings. Based on a 2014 traffic report prepared for the same site by TJKM Transportation Consultants, the previous industrial buildings would have generated 233 a.m. and 311 p.m. peak hour trips. To assess the potential project impact, PHA Transportation Consultants evaluated traffic operations for 4 key street intersections near the project site and the site access driveway for existing conditions, near-term conditions, project conditions, and 2030 cumulative conditions based on local traffic level-of-service (LOS) standards and a set of California Environmental Quality Act (CEQA) guidelines. The above trips estimates include a 20% truck trips that had been converted to passenger car equivalent before conducting traffic LOS analyses.

The result of the traffic LOS analysis indicated that all study intersections currently operate at LOS D or better for both a.m. and p.m. peak hours and would continue to operate at the same service levels for the approved projects and project condition scenarios. Under 2030 cumulative conditions with or without the proposed warehouse/distribution center project, two study intersections, Richmond Parkway at Atlas Road and San Pablo Avenue are projected to operate at LOS F due to the projected area wide growth, while other study intersections would continue to operate at acceptable conditions LOS D or better. LOS is a qualitative measure of traffic flow. It ranges from A to F; LOS A represents free-flow and LOS F represents jammed conditions. The City of Richmond does not have a specific traffic level-of-service standard, but generally follows the adopted policies of Contra Costa Transportation Authority (CCTA) established guidelines and standards. In general, LOS A through D are acceptable conditions, LOS E is considered at capacity and warrants investigation for improvement.

CCTA (Contra Costa Transportation Authority) had recommended a grade separation project for the Richmond Parkway and San Pablo Avenue intersection as a mitigation measure and was included in the countywide transportation plan for several years, but costs and a lack of policy support led to it being removed from various project lists eventually.
PHA conducted traffic signal warrant analyses for two of the non-signalized study intersections, Atlas Road at Giant Highway and at the site access driveway to determine if signalization is needed, results indicated all of these two locations would not meet the minimum standards for installing traffic signals currently, under project conditions and 2030 cumulative conditions.

CEQA review also indicated the proposed project would potentially create significant impacts on two of the study intersection for the 2030 condition but would not conflict with regional transportation planning plans and policies.

Site Access, Internal Circulation and Parking

As proposed, the project will not create new curb cuts but will use the existing driveway at the end of Atlas Road for access. The project architect indicated that while the site plan shows only one access, there is another access connecting the site to another part of the business park for emergency use. PHA recommends identifying the connection on the current project site plan.

The site access driveway is currently controlled by all-way stop signs and will perform at LOS A under the project condition and 2030 conditions. The driveway would not meet the minimum requirements for signalization and does not have sight distance restrictions as there are no vertical or horizontal curves in the vicinity.

The Atlas Road approach at the site access currently has one left-turn lane, one through lane and two right-turn lanes. Based on the driveway traffic analyses, one right-turn lane would provide adequate site access. Richmond Traffic Engineer indicated that the through lane is supposed to provide for the future extension of Atlas Road and the intersection would be reconfigured to a four-way intersection. There are ideas of converting the intersection to a traffic circle, or converting the double right-turn lane into a channelized right-turn lane into the project site. These ideas need to be further investigated and coordinated with all parties involved. The final design and configuration of must be able to provide for truck access and at the same time meeting city design guidelines.

As proposed, the site would provide 427 passenger vehicle parking spaces and 105 bicycle parking spaces for employees. This would exceed the city parking requirement of 358 spaces, and should be sufficient for the site. Drive aisles on the site are 25 and 30 feet wide for the employees parking area and the truck access aisle around the building and would also be adequate for internal circulation. PHA recommends installing speed humps along some of the longer drive aisles in the employees parking area and install speed limit signs, 5 mph or a safe speed for the truck access route around the building to prevent speeding.

PHA recommends the project sponsor and other businesses within the Pinole Business Park to jointly develop a Transportation Demand Management Program (TDM) on the site to facilitate and promote shuttle service, car pooling, and use alternative transportation such as bicycles and public transits.
1. Introduction

1.1 Project Description

PHA Transportation Consultants has completed this report to evaluate the potential traffic impact for the proposed warehouse/distribution center at 2995 Atlas Road. The site currently is vacant but was previously occupied by two industrial buildings with a total of 460,000 square feet.

The proposed project is 707,000 square feet warehouse and distribution center. The building would include 40,000 square feet of office use and approximately 607,000 square feet of warehouse space. Future uses of the building could include warehousing, warehousing distribution, light assembly, light manufacturing, and food manufacturing.

Access to and from the site would be via an existing access driveway on Atlas Road and no new driveways are proposed. Figures 1 shows the project site location, a more detailed description of the project and site plans is discussed later in the “Site Plan Review” section of the report.

1.2 Scope of Study

The study scope, designed to identify the potential project impact on area traffic circulation, was determined in consultation with Richmond City staff. Specifically, the study evaluates project trip generation, distribution, and the impact of the project traffic on four (4) critical street intersections near the project site plus the site access driveway for existing conditions, near-term conditions, project conditions and cumulative conditions. A list of the study intersections and study scenario description is as follows.

Study Intersections

1. Atlas Road/Giant Hwy. – all-way stop control
2. Atlas Road/Richmond Pkwy. - signalized
3. Richmond Pkwy./San Pablo Ave. - signalized
4. Giant Hwy/Richmond Pkwy. ramps - signalized
5. Atlas Road/Site Access Driveway – all-way stop control

Study Traffic Scenarios

1. Existing Conditions:
 This scenario evaluates current traffic conditions based on field collected traffic counts to establish a baseline.
Figure 1 Project Location and Study Intersections
Atlas Road Warehouse/Distribution Center Traffic Study, Richmond - PHA Transportation Consultants
2. Near-term Condition:
This scenario evaluates a short-term traffic condition by adding traffic from recently approved but not yet built projects to the existing conditions.

3. Project Conditions:
This scenario evaluates a traffic condition that assumes the proposed project is built and generating traffic to the study area. In essence, this is the critical scenario as it adds traffic from the proposed warehouse/distribution center to the existing and approved projects traffic. This scenario will help identify project traffic impact.

4. Cumulative 2030 Conditions:
This scenario evaluates a long-term traffic condition for the study area. The traffic analysis for this scenario is based on traffic forecasts obtained from the Countywide Traffic Model prepared by CCTA (Contra Costa Transportation Authority) for the study area.

5. Cumulative 2030 plus project Conditions:
This scenario evaluates a long-term traffic condition that assumes the proposed warehouse/distribution center is built and adding traffic to the study area. This scenario will help identify project traffic impact in the future. The analysis for this scenario is based on traffic forecasts obtained from the Countywide Traffic Model prepared by CCTA (Contra Costa Transportation Authority) for the study area.

1.3 Report Organization
This report consists of six chapters.

- **Chapter 1**
 This chapter describes the proposed project characteristic, locations and study scope.

- **Chapter 2**
 This chapter reviews current study area land use, street system and access.

- **Chapter 3**
 This chapter describes project study methodology, procedures, evaluation criteria and the potential project impact for various study scenarios.

- **Chapter 4**
 This chapter evaluates project impacts based on CEQA criteria and guidelines.

- **Chapter 5**
 This chapter identifies and discusses mitigation measures needed to minimize unacceptable LOS conditions.

- **Chapter 6**
 This Chapter evaluates the project site plan for parking and internal circulation.
2. Study Area Description

2.1 Land Use

The project site is located at the west terminus of Atlas Road within the Pinole Point Business Park. The site currently is occupied by two vacant industrial buildings and is in the process of being demolished. Land use in the vicinity of the project site is mostly industrial and warehouses.

The project site is bounded to the north and west by the East Bay Regional Park District’s Point Pinole Regional Shoreline Park and Union Pacific Railroad tracks (followed by San Pablo Bay) and to the west by industrial warehouse buildings within Pinole Point Business Park. To the south are existing industrial buildings, with the Country Club residential area located approximately 1,300 feet further to the south and to the east is light industrial and open space uses. Access to that parcel would to be provided off of Atlas Road.

2.2 Street Network and Access

The street network providing access and circulation to the area and the project site consists of Atlas Road and Giant Highway. Richmond Parkway, San Pablo Avenue and freeway I-80 provide regional access to and from the area. A brief description of the streets that provide immediate access to and from the project site is as follows:

Atlas Road is a curvilinear road running mostly in an east-west orientation. It connects Giant Highway in the west and Richmond Parkway in the east and has two travel lanes in each direction. Land use along the street on the south side is mostly single family residential while the north side is industrial and warehousing near the western end of the street and mostly single family residential along the area near Richmond Parkway. The area in between is vacant and undeveloped. Daily traffic volumes recorded at a point near Giant Highway is about 2,350 VPD (vehicles per day). Field observation indicated there is a considerable amount of trucks on Atlas Road due to the warehouses and UPS facility in the area. The posted speed limit is 35 mph (mile per hour) and on-street parking is not permitted. Atlas Road is the main access to and from the project site and all site related traffic must come through it in conjunction with either San Pablo Avenue, Richmond Parkway or Giant Highway.

Richmond Parkway is an expressway running in a northeast-southwest orientation. It extends from Fitzgerald Drive in Pinole, connecting freeway I-80, San Pablo Avenue, and freeway I-580. It provides a direct access to the industrial area in Richmond, central Richmond and the Richmond –San Rafael Bridge, bypassing freeway I-80. The road has three travel lanes in each direction near study intersections at San Pablo Avenue and Atlas Road, but transition to two lanes in each direction southwest of the Giant Highway exit ramp. On-street parking is not permitted and the posted speed limit is 50 mph (miles per hour) near the atlas Road. Most of the site related traffic is expected to use Richmond
Parkway along with Atlas Road to access the project site. CCTA (Contra Costa Transportation Authority) via its West County Sub Region has designated Richmond Parkway a route of regional significance and as such receives regular traffic monitoring and transportation planning and engineering service and assistance from CCTA.

San Pablo Avenue is a major north-south arterial road connecting Cities of Hercules, Pinole, Richmond, San Pablo, Albany, Berkeley, and Oakland. It is mostly a four-lane facility but is three lanes in each direction near study intersections of Atlas Road and Richmond Parkway. It is also designated as a route of regional significance by CCTA (Contra Costa Transportation Authority) via its West County Sub Region as it provides access to a number of cities. San Pablo Avenue functions as a relief route for freeway I-80 and has received funding for various capacity improvement projects including traffic signal timing coordination. A small amount of the project site related traffic is expected to use San Pablo Avenue along with Richmond Parkway, Atlas Road to access the project site. On-street parking is not permitted along the roadway near the study area and there is no posted speed limit sign near the study intersection at Richmond Parkway. The observed traffic speed in the area is between 40 and 45 mph.

Giant Highway is a north-south arterial road with one travel lane in each direction. It connects Atlas Road in the north and Brookside Drive in the south, providing access to the industrial area to the north and south as well as residential areas of north Richmond and Parchester Village and the West County Detention Facility and Point Pinole Regional Park. The segment between Atlas Road and Griffin Drive is called Giant Highway and the segment south of Griffin Drive is called Giant Road. The posted speed limit near Phanor Drive is 35 mph. Giant Highway currently carries about 2,000 vehicles per day according to a 2014 daily volume count at a point near the Pinole Point Business Park.

Freeway I-80 and I-580 are freeways providing regional access to the area and connect Richmond to with Sacramento in the north, Concord and Livermore in the east, Oakland and San Francisco in the south and west, and Marin County in the west.

2.3 Transit Service

AC Transit (Alameda and Contra Costa Transit) provides public transit services via Line 71 and 376 to the study area and surrounding cities. Figure 2 shows available transit routes serving the project site and study area.

Line 71 runs between El Cerrito Plaza BART to Richmond Parkway Transit Center via Carlson Blvd., Richmond BART, Rumrill Blvd., Contra Costa College, Parchester Village, Giant Highway, Atlas Rd., and Richmond Parkway. From El Cerrito Del Norte BART Station, weekday service begins at 5:00 a.m. and ends at Richmond Parkway Transit Center about 8:00 p.m. From Richmond Transit Center, weekday service begins at 5:45 a.m. and ends at El Cerrito BART Station about 8:45 p.m. Services are provided at about 30-minute intervals.
Figure 2 Study Area Public Transit Service Routes

AC Transit Routes 71, 376 serving the area along Giant Hwy and Atlas Road

Project Site
Line 376 is a non commute hour line providing clockwise service El Cerrito Del Norte BART Station to Pinole Vista via Cutting Blvd., Richmond BART, North Richmond, Contra Costa College, Parchester Village, and Richmond Pkwy. Return via Richmond Parkway Transit Center and Hilltop Mall. Service is provided at 30-minute intervals beginning about 8:20 a.m. and ending at about 3:55 p.m.

2.4 Pedestrian and Bicycle Facilities

Pedestrian facilities generally include sidewalks, crosswalks, pedestrian signals and multi-use trails. In the vicinity of the project site, sidewalk is the only available pedestrian facility provided on Giant Highway along the Pinole Point Business Park frontage and along the entire length of the south side of Atlas Road between the project site and Richmond Parkway.

Existing bicycle facilities near the project site include a Class I bike path on the south side of Atlas Road, running between a point east of the railroad crossing and Richmond Parkway. There are also bike path/trails within the Point Pinole Regional Shoreline, which is immediately to the northwest of the proposed project site.
3. Traffic Impact Analysis

3.1 Study Approach

To identify the potential traffic impact of the proposed warehouse/distribution center project, PHA first evaluated current study intersection traffic Level-of-Service (LOS) to establish a baseline - “Existing Traffic Conditions”. Then, traffic LOS for study intersections was evaluated again with the added trips from recently approved but not yet built projects to identify traffic impacts from the approved projects. Finally, PHA evaluated study intersection LOS, adding traffic from the proposed warehouse/distribution to the existing and approved projects conditions to identify project impacts.

For “Cumulative Traffic Conditions”, PHA conducted study intersection traffic LOS first with traffic volume forecasts for 2030 obtained from the traffic model prepared CCTA (Contra Costa Transportation Authority to form the 2030 future baseline. Subsequently, traffic LOS for study intersections was evaluated again with the added project (Atlas Road Warehouse/Distribution Center) project trips to identify project traffic impacts under the cumulative 2030 conditions.

3.2 Traffic (LOS) Analysis Methodology and Evaluation Criteria

The traffic study focuses on the evaluation of intersection capacity and operation because intersection controls traffic flows. Study intersection traffic LOS was evaluated and ranked with the traffic Level-of-Service (LOS) ranking scale. LOS is a qualitative measurement of traffic operations and flow characteristics; LOS A represents free flow conditions with little to no delays. LOS E represents conditions at capacity, and LOS F represents over saturation with excessive delays.

There are two sets of LOS calculation methods for intersection capacity analysis; one for signalized intersections and the other for non-signalized intersection. For signalized intersection, traffic LOS is determined based on the average delay per vehicle for the entire intersection as a whole.

For the non-signalized intersections, traffic LOS is determined based on the average vehicle delay for approaches controlled by stop signs or yield signs at minor streets. Through traffic movements on major street approaches were evaluated but are not the determining factor intersection LOS. Table 1 shows the LOS rankings and their relationships to traffic conditions for both signalized and non-signalized intersections.
Table 1 Traffic Operation Ranking (LOS) Criteria
Atlas Road Warehouse/Distribution Center Traffic Study – Richmond

<table>
<thead>
<tr>
<th>Signalized Intersections (HCM 2000 Methodology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-signalized Intersections (HCM 2000 Methodology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

(1) Control delay includes delays of initial deceleration, move-up-time in the queue, stops, and re-acceleration. Calculated LOS is for minor street approaches. Major street traffic movements would operate at LOS A as they do not have traffic control.

3.3 Significance Criteria and Minimum LOS Standards

Significance criteria are used to determine whether a project impact is considered significant and therefore required mitigation. A proposed development project is considered to have a significant impact on the environment if it would cause an increase in traffic which is substantial in relation to the traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, or delay and congestion at intersections), or change the condition of an existing street (e.g., street closures, changing direction of travel) in a manner that would substantially impact access or traffic load and capacity of the street system.

The City of Richmond does not have a Level-of-Service policy for vehicle traffic and intersection operation. For the purpose of this study, the following significant criteria were used in evaluating project impact on study intersections. These criteria are consistent with policies and standards established by Contra Costa Transportation Authority (CCTA) and cities in Contra Costa County.

- If a signalized intersection is projected to operate within expected delay ranges (i.e., LOS D or better with an average control delay of equal to or less than 55
seconds per vehicle) without the project and the project is expected to cause the intersection to operate at an unacceptable LOS (E or F);

- If an intersection is projected to operate at or over capacity (i.e., LOS E or F) without the project, and the project is expected to increase the average control delay by more than 5 seconds; or

- If the operations of a non-signalized study intersection is projected to decline with the addition of Project traffic, and if the installation of a traffic signal based on the Manual on Uniform Traffic Control Devices (MUTCD) Peak Hour Signal Warrant (Warrant 3) would be warranted.

In addition to the above local criteria, the California Environmental Quality Act (CEQA) has a broad set “Significant Impact” criteria and guidelines for evaluating development project impacts. A more detailed discussion of the project impact assessment based on the CEQA criteria and guideline is in “Section 4 CEQA Review” of this report.

3.4 Current Conditions Traffic (LOS)

The calculated traffic LOS for current conditions indicated the intersections of Atlas Road and Giant Highway, Richmond Parkway and Giant Highway Ramps are operated at LOS A and B, meaning there are little delays or congestions. The intersection of Atlas Road and the site access driveway also operated at LOS A since there is no traffic using the driveway currently except a small amount of truck traffic associated with the demolition of the current industrial buildings. The two Richmond Parkway intersections at Atlas Road and San Pablo Avenue operated at LOS C and D and traffic is heavier than other study intersections since both are major arterial streets and must carry a large amount of commuter traffic. The Richmond Parkway intersection at Atlas Road moved adequately during both a.m. and p.m. peak periods, while traffic would back up from time to time at the San Pablo Avenue intersection, but vehicle queues generally dissipated quickly. Overall, the calculated LOS results are consistent with observations from the field. Table 2 shows study intersection current traffic LOS and Figure 3 shows current study intersection peak hour traffic volumes and intersection lane configurations.

It should be noted that while all study intersections operated at acceptable conditions, the right turn traffic movement from the shopping center to Richmond Parkway would backup frequently during the p.m. peak period. Adding a right-turn green arrow to the shopping center approach would help improve traffic operation. Field observation also indicated that there is circulation problem on the site particularly during the p.m. peak period. Inbound traffic to the shopping center would backup to the Richmond Parkway frequently due to the short spacing between Richmond Parkway and the internal intersection. Eliminating the stop sign for the incoming traffic would improve traffic movements. It should be noted that this condition is not related to the proposed warehouse project.
<table>
<thead>
<tr>
<th>Study Intersections</th>
<th>Peak Period</th>
<th>Existing Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Delay</td>
</tr>
<tr>
<td>1 Giant Rd./Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
</tr>
<tr>
<td>2 Richmond Pkwy./Atlas Rd. (signalized)</td>
<td>AM</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>25.3</td>
</tr>
<tr>
<td>3 San Pablo Ave./Richmond Pkwy. (signalized)</td>
<td>AM</td>
<td>34.7</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>49.9</td>
</tr>
<tr>
<td>4 Giant Rd./Richmond Pkwy. Ramps (signalized)</td>
<td>AM</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>12.3</td>
</tr>
<tr>
<td>5 Site Driveway/Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
</tr>
</tbody>
</table>

PHA evaluated existing traffic operations with traffic counts collected from the field during rush hour periods (7-9 am and 4-6 pm) in August while schools are back in session. Study intersection traffic LOS was calculated with the methodology discussed in the 2000 Highway Capacity manual using SYNCHRO computer software. For signalized intersection, delays and LOS represents the average delays for the intersection as a whole. For side street stop control intersections, the delays and LOS are for the side street traffic with the highest traffic volumes. Traffic from main street approaches without traffic control are assumed operating at LOS A. Delay is measured in second per vehicle, LOS=Level-of-Service.
Figure 3 Current Conditions Study Intersection Traffic Volumes and Lane Configurations
Atlas Road Warehouse/Distribution Center Traffic Study, Richmond - PHA Transportation Consultants
Signal Warrant Analysis

Two of the study intersections, Atlas Road at Giant Highway and the site access driveway are not signalized and are currently controlled by all-way stop signs. As such, PHA conducted signal warrant analyses to determine traffic volumes are sufficiently high to warrant traffic signal installation. Results of the “peak-hour-volume” warrant analysis indicated both intersections would not satisfy the minimum requirements for installing traffic signals currently. Caltrans (California Department of Transportation) Traffic Manual has established 11 signal warrants serving as a guide for determining traffic signalization needs. “Peak-hour-volume” is the easiest warrant to be satisfied.

3.5 Approved Project Conditions Traffic and Impact

As discussed above, the Near-term Condition includes existing traffic plus traffic from recently approved but not yet built projects. Based on information provided by City staff, there is one previously approved but not yet completed project, Sares Regis, a warehouse/distribution center type project located also within the Pinole Point Business Park. The project consists of four buildings with a total of 632,615 square feet of space. At the time of this study, only one building with 117,200 square feet is completed and occupied by Whole foods. The remaining three buildings, when complete, are expected to generate 69 morning peak hour trips (47 inbound and 22 outbound) and 75 afternoon peak hour trips (23 inbound and 52 outbound).

PHA conducted traffic LOS analysis again for the study intersections with the added traffic from the approved project. Assuming the remaining Sares Regis buildings are built and occupied, all study intersections would operate at the same LOS as with existing conditions, with small increase in delays. Table 3 shows the results of the LOS analysis along with a comparing with the existing conditions traffic LOS. Figure 4 shows study intersection peak hour traffic volumes for the approved project conditions.

Signal Warrant Analysis

PHA conducted signal warrant analysis again with the added traffic from approved projects to determine if signalization would be needed for these two intersections. Results of the “peak-hour-volume” warrant analysis indicated both intersections would not satisfy the minimum requirements for the approved projects conditions.
Table 3 Study Intersection LOS Analysis -Existing + Approved Projects Conditions

<table>
<thead>
<tr>
<th>Study Intersections</th>
<th>Peak Period</th>
<th>Existing Conditions</th>
<th>Approved Projects Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>1 Giant Rd./Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
<td>A</td>
</tr>
<tr>
<td>2 Richmond Pkwy./Atlas Rd. (signalized)</td>
<td>AM</td>
<td>18.4</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>25.3</td>
<td>C</td>
</tr>
<tr>
<td>3 San Pablo Ave./Richmond Pkwy. (signalized)</td>
<td>AM</td>
<td>34.7</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>49.9</td>
<td>D</td>
</tr>
<tr>
<td>4 Giant Rd./Richmond Pkwy. Ramps (signalized)</td>
<td>AM</td>
<td>13.3</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>12.3</td>
<td>B</td>
</tr>
<tr>
<td>5 Site Driveway/Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
<td>A</td>
</tr>
</tbody>
</table>

Study intersection traffic LOS was calculated with the methodology discussed in the 2000 Highway Capacity manual using SYNCHRO computer software. For signalized intersection, delays and LOS represents the average delays for the intersection as a whole. For side street stop control intersections, the delays and LOS are for the side street traffic with the highest traffic volumes. Traffic from main street approaches without traffic control operates at LOS A. Delay is measured in second per vehicle, LOS=Level-of-Service.

3.6 Project Conditions Traffic and Impact

Project Trip Generation Estimates

The proposed project is a warehouse/distribution center. Based on trip generation rates published in the latest ITE (Institute of Transportation Engineers) Trip Generation Manual 9th Edition for similar land uses and facilities. The proposed project is expected to generate 94 morning peak hour trips (65 inbound and 29 outbound) and 102 afternoon peak hour trips (31 inbound 71 outbound). The above estimate assumes 20% of the peak hour trips are truck trips which has a passenger car (PCE) equivalent of 2.0. According to a 2014 report prepared by TJKM Transportation Consultants for the same project site, the previous industrial buildings generate about 233 a.m. and 311 p.m. peak hour trips. Table 4 summarizes site traffic generation analysis results.
Figure 4 Approved Projects Conditions Study Intersection Traffic Volumes and Lane Configurations
Atlas Road Warehouse/Distribution Center Traffic Study, Richmond - PHA Transportation Consultants
Table 4 Project Trip Generation Analysis

Atlas Road Warehouse/Distribution Center Traffic Study – Richmond

<table>
<thead>
<tr>
<th>Proposed Use</th>
<th>Units (ksf)</th>
<th>AM Peak Hour Trips</th>
<th>PM Peak Hour Trips</th>
<th>Daily Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rates in% Trips Out %</td>
<td>Rates in% Trips Out %</td>
<td>Rates in% Trips Out %</td>
</tr>
<tr>
<td>Warehouse/Dist Center (ITE 152)</td>
<td>708</td>
<td>0.11 69 54 31 24</td>
<td>0.12 31 26 69 59</td>
<td>1.68 50 595 50 595</td>
</tr>
<tr>
<td>(Peak hour truck 20%)</td>
<td>N.A.</td>
<td>-11 N.A. -5</td>
<td>N.A. -5 N.A. -12</td>
<td>N.A. N.A. N.A. N.A.</td>
</tr>
<tr>
<td>Passenger cars</td>
<td>N.A.</td>
<td>43 N.A. 19</td>
<td>N.A. 21 N.A. 47</td>
<td>N.A. N.A. N.A. N.A.</td>
</tr>
<tr>
<td>(Passenger car equivalent 2.0)</td>
<td>N.A.</td>
<td>22 N.A. 10</td>
<td>N.A. 10 N.A. 24</td>
<td>N.A. N.A. N.A. N.A.</td>
</tr>
<tr>
<td>Total</td>
<td>N.A.</td>
<td>65 N.A. 29</td>
<td>N.A. 31 N.A. 71</td>
<td>N.A. N.A. N.A. N.A.</td>
</tr>
</tbody>
</table>

Project Trip Distribution Assumptions

PHA estimated the directional distribution of project traffic with consultation with city traffic engineering staff. The directional traffic distribution predicts the potential routes of travel, based on examinations of the study area street layout, area land use, current circulation patterns and traffic volumes. Figure 5 shows the estimated directional trip distribution for the project.

Project Scenario Traffic LOS and Impact

PHA conducted traffic operation analyses for the study intersections to determine their traffic LOS with the above trip generation estimates and directional distribution assumptions. The project scenario assumes the same roadway geometrics as with existing conditions scenario since there are no roadway improvement projects currently undertaken in the study area.

With the addition of project (Atlas Road Warehouse/Distribution Center) traffic, the intersection LOS analyses indicated that all of the study intersections would continue to operate at the same LOS with small increases (less than 5 seconds) in intersection delays. Therefore, it can be concluded that the project’s impact on area traffic operation is minimal. Table 5 shows study intersection analysis results and a comparison with Current and Approved Projects conditions LOS analyses. Figure 6 shows study intersection peak hour traffic volumes for the project condition.

Project Impact on Public Transit, Pedestrian and Bicycle Facilities

2000 census data indicated about 15% workers in Richmond use public transportation to and from work. The project sponsor estimated that the proposed project could accommodate about 400 employees. This means the project could potentially add about 60 workers to the public transportation system. AC Transit Line 71 and 376 currently provide service to the area with bus stops on Giant Highway and Atlas Road in front of the Pinole Point Business Park. This would increase public transportation ridership, reducing demand on traffic load and emission, and improve air quality. There is a bike path on the south side of Atlas Road connecting the Pinole Point Business Park and Richmond Parkway to accommodate future employees who choose to bike or walk to work. However, there is no bike lane or sidewalk on Giant Highway to accommodate bicyclists or pedestrians.

Signal Warrant Analysis

PHA conducted signal warrant analysis again with the added traffic from approved projects and traffic from the proposed development to determine if signalization is needed for these two intersections/driveways. Again, results of the “peak-hour-volume” warrant analysis indicated both intersections would not satisfy the minimum requirements with the added project traffic. At the time when the Pinole Point Business Park Development was first approved, the project was required to install traffic signals at the Giant Highway and Atlas Road intersection as part of the project mitigation. Current study indicated the intersection, under project conditions, would not meet the minimum requirement for signalization.
Figure 5 Project Traffic Distribution Assumptions
Atlas Road Warehouse/Distribution Center Traffic Study, Richmond - PHA Transportation Consultants
<table>
<thead>
<tr>
<th>Study Intersections</th>
<th>Peak Period</th>
<th>Existing Conditions</th>
<th>Approved Projects Conditions</th>
<th>Approved Projects+ Project Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Delay</td>
<td>LOS</td>
<td>Delay</td>
</tr>
<tr>
<td>1 Giant Rd./Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
<td>A</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
<td>A</td>
<td>7.0</td>
</tr>
<tr>
<td>2 Richmond Pkwy./Atlas Rd. (signalized)</td>
<td>AM</td>
<td>18.4</td>
<td>B</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>25.3</td>
<td>C</td>
<td>27.9</td>
</tr>
<tr>
<td>3 San Pablo Ave./Richmond Pkwy. (signalized)</td>
<td>AM</td>
<td>34.7</td>
<td>D</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>49.9</td>
<td>D</td>
<td>50.5</td>
</tr>
<tr>
<td>4 Giant Rd./Richmond Pkwy. Ramps (signalized)</td>
<td>AM</td>
<td>13.3</td>
<td>B</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>12.3</td>
<td>B</td>
<td>12.4</td>
</tr>
<tr>
<td>5 Site Driveway/Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
<td>A</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
<td>A</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Study intersection traffic LOS was calculated with the methodology discussed in the 2000 Highway Capacity Manual using SYNCHRO computer software. For signalized intersection, delays and LOS represents the average delays for the intersection as a whole. For side street stop control intersections, the delays and LOS are for the side street traffic with the highest traffic volumes. Traffic from main street approaches without traffic control operates at LOS A. Delay is measured in second per vehicle, LOS=Level-of-Service.
Figure 6 Project Conditions Traffic Volumes and Lane Configurations
Atlas Road Warehouse/Distribution Center Traffic Study, Richmond - PHA Transportation Consultants
3.7 Cumulative 2030 Traffic Conditions and Project Traffic Impact

To identify project traffic for the 2030 conditions, PHA first conducted traffic LOS analyses for the study intersections to form a future baseline. The 2030 traffic LOS analysis was conducted with the traffic volume forecasts from the Countywide Traffic Model developed by CCTA, which predicts future travel patterns for the region based on population and economic growth projections for the Contra Costa County Area. Subsequently, intersection LOS was evaluated again with the added traffic from the proposed warehouse/distribution center to identify project impact.

Table 6 shows a summary of study intersection traffic LOS analyses, along a comparison with existing conditions, approved projects conditions and project conditions. As indicated, two of the study intersections, Richmond Parkway at San Atlas Road and San Pablo Avenue would operate at LOS F, while the other three intersections would operate at acceptable conditions LOS C or better. Figure 7 and 8 show 2030 cumulative traffic volumes with and without project.

Signal Warrant Analysis

PHA conducted signal warrant analyses for the two non-signalized intersections for the 2030 conditions with and without traffic from the proposed warehouse/distribution center. Again, results of the “peak-hour-volume” warrant analyses indicated both intersections would not satisfy the minimum requirements with the 2030 cumulative traffic scenarios.
Table 6: Study Intersection LOS Analysis Summary

<table>
<thead>
<tr>
<th>Study Intersections</th>
<th>Peak Period</th>
<th>Existing Conditions</th>
<th>Approved Projects Conditions</th>
<th>Approved Projects+ Project Conditions</th>
<th>Cumulative 2030 Conditions</th>
<th>Cumulative 2030 + Project Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Giant Rd./Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
<td>A</td>
<td>7.3</td>
<td>A</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
<td>A</td>
<td>7.4</td>
<td>A</td>
<td>8.2</td>
</tr>
<tr>
<td>2 Richmond Pkwy./Atlas Rd. (signalized)</td>
<td>AM</td>
<td>18.4</td>
<td>B</td>
<td>19.6</td>
<td>B</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>25.3</td>
<td>C</td>
<td>32.3</td>
<td>C</td>
<td>101.6</td>
</tr>
<tr>
<td>3 San Pablo Ave./Richmond Pkwy. (signalized)</td>
<td>AM</td>
<td>34.7</td>
<td>D</td>
<td>37.6</td>
<td>D</td>
<td>106.1</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>49.9</td>
<td>D</td>
<td>50.7</td>
<td>D</td>
<td>134.5</td>
</tr>
<tr>
<td>4 Giant Rd./Richmond Pkwy. Ramps (signalized)</td>
<td>AM</td>
<td>13.3</td>
<td>B</td>
<td>13.4</td>
<td>B</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>12.3</td>
<td>B</td>
<td>12.5</td>
<td>B</td>
<td>13.9</td>
</tr>
<tr>
<td>5 Site Driveway/Atlas Rd. (all-way stop)</td>
<td>AM</td>
<td>6.8</td>
<td>A</td>
<td>6.8</td>
<td>A</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>6.8</td>
<td>A</td>
<td>6.8</td>
<td>A</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Study intersection traffic LOS was calculated with the methodology discussed in the 2000 Highway Capacity Manual using SYNCHRO computer software. For signalized intersection, delays and LOS represents the average delays for the intersection as a whole. For side street stop control intersections, the delays and LOS are for the side street traffic with the highest traffic volumes. Traffic from main street approaches without traffic control generally operates at LOS A. Delay is measured in second per vehicle, LOS=Level-of-Service.

a With an employer sponsor TDM program, p.m. peak delays can be reduced to 105.5 seconds, less than 5 seconds significant impact threshold.
Figure 7 Cumulative 2030 Traffic Conditions Traffic Volumes and Lane Configurations
Atlas Road Warehouse/Distribution Center Traffic Study, Richmond - PHA Transportation Consultants
Figure 8 Cumulative 2030 plus Project Condition Traffic Volumes and Lane Configurations
Atlas Road Warehouse/Distribution Center Traffic Study, Richmond - PHA Transportation Consultants
4. CEQA Review

4.1 Project Impact Assessment based on CEQA guidelines

In the previous section, PHA evaluated project impacts based on local criteria and standards. This section evaluates project impacts based on a set of broader state mandated significance impact guidelines and criteria. Table 7 summarizes the results of project impact evaluation based on CEQA (California Environmental Quality Act) guidelines and criteria.

<table>
<thead>
<tr>
<th>TRANSPORTATION/TRAFFIC: Would the project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact w/Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian, bicycle paths and mass transit?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>b. Conflict with an applicable congestions management program, including but not limited to level of service demands and travel demand measures, or other standards established by the county congestions management agency for designated roads/highways.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>c. Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>d. Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>e. Result in inadequate emergency access?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>f. Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Discussion:

a) The Project is not expected to increase traffic or have an adverse impact on existing traffic load and capacity of the access roads or the surrounding street system. The Project area would be accessible from Atlas Road, Giant Highway in conjunction with, Richmond Parkway and San Pablo Avenue. All of the study intersections are expected to operate at the same LOS with and without the project under project conditions. Project impacts on study intersection delays are less than 5 seconds. Therefore, the Project would have less than significant impact on existing traffic patterns and conditions.

b) Traffic LOS analysis results indicated that all study intersections currently operate at LOS D or better for both a.m. and p.m. peak hours and would continue to operate at the same service levels for the project condition. However, two of the study intersections would operate at LOS F by 2030 due to region wide growth projection. Since there are no available improvement plans currently, mitigation would have to come from better transportation system management, improving public transportation service to the area, and improvement elsewhere to divert traffic from these two intersections. PHA recommends project sponsor and other businesses within the Pinole Business Park to jointly develop a transportation demand Management program (TDM) on the site to facilitate shuttle service, carpooling, and use alternative transportation such as bicycles and public transits. A TDM program that reduces the proposed project site traffic by 25% would minimize the project impact to a less than significant level.

c) There are no airport facilities nearby the project site and the project will only generate vehicle traffic. Therefore, the project would not result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks. Therefore, there is no impact on air traffic from the project.

d) The Project would not create any hazards due to design features on the adjacent street system. All of the proposed driveways will have adequate sight distance and are expected to operate at acceptable LOS C or better under project conditions and 2030 cumulative conditions.

e) The project will use existing driveway on Atlas Road and will not create new access driveways. The existing driveway will provide adequate access to and the site and will operate at LOS A for project conditions and cumulative conditions and without sight distance restrictions.

f) The project will not conflict with city policies supporting alternative transportation. The proposed access driveways will not affect existing sidewalks other than creating a curb-cut near the project site. It is recommended that the project sponsor to install bike storage racks on the site for future employees to encourage bicycle use. 2010 Bay Area Census indicated that about 15% of Richmond residents use public transportation travelling to and from work. This will help increase public transportation use, reduce traffic load on streets, reduce auto emission and improve air quality.
5. Mitigation Measure

5.1 Mitigation Considerations

The above traffic operation analyses indicated that the proposed warehouse/distribution center project would not cause any of the study intersections to operate at unacceptable conditions for near-term and project condition scenarios. All study intersections and traffic movements currently operate at LOS D or better and will continue to operate at the same LOS with minor increased delays of less than five seconds. For the cumulative 2030 condition, the Richmond Parkway intersections at Atlas Road and San Pablo Avenue are projected to operate at LOS F due to area wide growth.

These two intersections are fully developed and there is limited opportunity to improve traffic operation by widening. CCTA had proposed grade separation for the Richmond Parkway and San Pablo Avenue intersection at one point and was included in the West County Action Plan for several years, but costs and a lack of policy support led to it being removed from various project lists eventually. As such, mitigation for these two intersections would have to come via other system management strategies, adding public transit, and improvements at other facilities to divert traffic.

While two of the study intersections are projected to operate at LOS F for the 2030 cumulative condition, PHA recommends the project sponsor to develop a TDM program as a strategy to alleviate conditions at the Richmond Parkway at Atlas Road and San Pablo Avenue. A TDM program that reduces project traffic by 25% would reduce project impact at these two intersections to less than 5 seconds.

The Pinole Point Business Park project was required to install traffic signals at the Atlas Road/Giant Highway at the time when the project was first approved. Current study indicated that the intersection would not meet the minimum requirement for signalization for project conditions and 2030 cumulative conditions.

The Atlas Road approach at the site access currently has one left-turn lane, one through lane and two right-turn lanes. Based on the driveway traffic analyses, one right-turn lane would provide adequate site access. Richmond Traffic Engineer indicated that the through lane is supposed to provide for the future extension of Atlas Road and the intersection would be reconfigured to a four-way intersection. There are ideas of converting the intersection to a traffic circle, or converting the double right-turn lane into a channelized right-turn lane into the project site. These ideas need to be further investigated and coordinated with all parties involved.
6. Site Plan Review

6.1 Project Site Plan Descriptions

The proposed development is a warehouse/distribution center consists of 707,000 square feet of space. Then project would be located at the same site previously occupied by a steel galvanizing operation and a paint line operation within the Pinole Point Business Park at the western end of Atlas Road in North Richmond. Vehicle access to and from the site would be via an existing driveway off Atlas Road. The driveway is a full access driveway accommodating both inbound and outbound traffic. Employee parking area as shown is near the site entrance west of the building. Parking spaces provided on the site is 427 for passenger vehicles and 260 for trucks.

Internal circulation for the employee parking area is provided via drive aisles measuring 25 feet wide. Truck circulation is provided via a 30 feet wide drive aisle looping around the building. The site also provides 105 parking spaces bicycles. Figure 9 shows the project site plan.

6.2 Site Access, Internal Circulation, and Parking

Site Access and Internal Circulation

The site has one driveway at the western end of Atlas Road and would provide adequate vehicle access for both employees and trucks access. Driveway width and turning radius should be designed following City of Richmond standards for industrial uses.

Driveway operation analysis indicated that the driveway would operate at LOS A at project conditions and cumulative 2030 conditions and would not have sight distance problems as there are no horizontal or vertical curves on Atlas near the site. Drive aisles for the employee parking area as shown on the site plan is 25 feet wide and would provide adequate internal circulation. PHA recommends installing speed humps on long drive aisles to prevent speeding. The project site plan also shows a 30 feet wide drive aisle around the building and should be adequate for trucks to navigate. PHA recommends installing speed limit signs along the truck access aisle, preferably under 10 mph or a speed that is considered safe for trucks, to prevent speeding (Please see markups in Figure 9 Project Site Plan). The project architect indicated there is another emergency access to connect the site to another part of the business park. That access should be identified on the project site plan.

Parking

The project site is zoned M-3 Heavy Industrial. Richmond Parking Code requirement for the M-3 zone is 1 space per 1,500 sf for the first 30,000 sf and 1 space per 2,000 sf afterward. As a 707,000 sf building, the project is required to provide 358 parking spaces on the site. The project site plan shows 427 parking spaces (exceeding the minimum requirement). The project site plan also shows 105 bicycle parking spaces and 260 parking spaces for trucks. This should satisfy Richmond’s parking requirement.
TDM Program - Atlas Road Warehouse Project

TDM (Transportation Demand Management) programs are aimed to reduce traffic congestion, fuel consumption and air pollutions. A TDM program for the proposed Atlas Road Warehouse/Distribution Center could include the following strategies. It is recommended that the project sponsor for the Atlas Road Warehouse/Distribution Center coordinate with other employers at the Pinole Business Park to jointly develop and run the TDM program for the benefit of the entire business park.

Transportation Coordinator
Designate a transportation coordinator on the site to provide trip planning and assistance to commuters. The presence of an on-site coordinator can make it easier to obtain information about alternatives to single occupancy vehicle commutes.

On-Site Transit Information and Pass Sales
Providing transit information on-site can lower the barriers that may prevent people from trying transit. Convenient purchase of transit passes may also facilitate trying out transit use. In addition, on-site sales may support introduction of site specific transit pass discounts.

Rideshare Matching Services.
Rideshare matching services put compatible commuters in touch with one another to enable carpooling. Employers can facilitate formation of ridesharing arrangements by employees in a number of ways, ranging from simple in-house employee match listings to computerized matching programs. These services may be unique to the given employer or can pool matching candidates from a larger area ranging from multiple employers in a building or complex to large regional matching systems.

Guaranteed Ride Home
Guaranteed ride home programs provide backup transportation to employees who rideshare or use transit if they need to return home suddenly for an emergency or if they must work late and therefore cannot connect with the mode they used to travel to the site on that day. Generally, these programs provide vouchers for the person to travel home by taxi, although some employers permit use of company vehicles as well.

Preferential Parking
Employers may set aside reserved parking spaces as an incentive to carpool or vanpool. This is a non-monetary benefit that can be an important incentive if parking is tight or if the parking lot is large and the reserved spaces are near the building entrance. Reserved spaces may also be sheltered versus outdoors, lessening the impact of severe weather.
Bicycle Storage, Lockers, and Changing Facilities
Changing facilities and showers and secure bicycle parking are key features for an employer or institution interested in encouraging bicycle use. Such facilities may be combined with an exercise facility and may encourage healthy habits.

Shuttle Bus Services
Some employers choose to operate shuttle bus services to provide easy connections with nearby rapid transit services or other important facilities. Shuttle services may be an individual employer effort or a collective effort of a few sites and employers. In some instances, shuttles are also used for local circulation during the midday, lessening the need to bring a personal vehicle to the job site.

Transit Subsidies
Employers can reduce the cost of taking transit by offering prepaid or discounted transit passes to employees who agree to commute by transit. This benefit can vary from a modest share of the actual cost to full absorption of the cost.

Flexible Work Hours
Flexible work hours are programs allowing employees a degree of freedom in choosing their starting and quitting times.

Staggered Work Hours
Staggered work hours are fixed scheduling of work that normally spreads the employee starting and quitting times over a 1- to 3-hour period, with individual groups of employees designated to report and leave at 15 to 30 minute intervals. Staggered work hours are generally employed in large facilities, especially manufacturing, where work schedules are otherwise regular.
Install speed limit signs to prevent speeding
Install speed humps on long drive aisle to discourage speed
Consider rounding off a little for truck maneuvering
Please show the secondary access on the site plan or other plans.

Figure 9 Project Site Plan (Source: Project applicant)
Atlas Road Warehouse/Distribution Center Traffic Study, Richmond - PHA Transportation Consultants
COMMENTS AND RESPONSES
FOR
MITIGATED NEGATIVE DECLARATION

ATLAS ROAD INDUSTRIAL BUILDING
(STEELSCAPE) PROJECT
STATE CLEARINGHOUSE NUMBER 2015042073
CITY OF RICHMOND FILE NO. PLN-14-119

PREPARED FOR:
PLANNING AND BUILDING SERVICES DEPARTMENT
CITY OF RICHMOND, CALIFORNIA

JUNE 2015
TABLE OF CONTENTS

SECTION 1 - Introduction 1

SECTION 2 - Comments and Responses 2

APPENDICES

A. City of Richmond Notices of Availability and Intent to Adopt a Mitigated Negative Declaration. April 10, 2015.

C. East Bay Regional Park District Typical AC Trail Section

E. Mitigation Monitoring and Reporting Program.
This page intentionally left blank.
SECTION 1
INTRODUCTION

OVERVIEW

This Comments and Responses document (including the Mitigation Monitoring and Reporting Program), along with the Circulation Draft Initial Study and Mitigated Negative Declaration (IS/MND) constitute the CEQA review for the proposed Atlas Road Industrial Building (Steelscape) Mixed-Use project. These documents were prepared for the City of Richmond Planning and Building Services Department by Grassetti Environmental Consulting, pursuant to the requirements of the California Environmental Quality Act (CEQA), to inform decision makers and the general public the potential impacts related to the proposed project. The IS/MND identified mitigation measures that reduce potential project impacts to a less-than-significant level.

The Circulation Draft Initial Study and Mitigated Negative Declaration was circulated on April 10, 2015 for a 30-day public review and agency review period, which was subsequently extended to a 55-day period, ending on May 26, 2015. The comment period provided an opportunity for the public and agencies to review the issues addressed and to offer comments on any aspect of the process, or the adequacy of the evaluation and mitigation measures. The Notice of Availability of an Initial Study/Mitigated Negative Declaration was posted on the City’s website, sent to the State Clearinghouse on April 10, 2015, and distributed to local libraries. Notice was also sent to all property owners within 300 feet of the project site as well as interested local agencies and parties. During the comment period, seven written comments were received. The written comments are reproduced, and all relevant comments are responded to in Section 2 of this document.

This Comments and Responses document serves as an addendum to the Circulation Draft Initial Study and Mitigated Negative Declaration. The Circulation Draft Initial Study and Mitigated Negative Declaration, and this Comments and Responses document, including the Mitigation Monitoring and Reporting Program, will be considered by the Design Review Board in their review of the proposed project at a properly noticed public meeting. The Design Review Board will make the final determination on the adequacy of the Mitigated Negative Declaration at this meeting.

As required by law, and to assure implementation of all mitigation measures adopted through the California Environmental Quality Act (CEQA) process, the Mitigation Monitoring and Reporting Program (see Appendix E) identifies the timing of, and the agency or agencies responsible for, enforcement and monitoring of each mitigation measure.

1 http://www.ci.richmond.ca.us/DocumentCenter/View/30924
SECTION 2
RESPONSES TO COMMENT LETTERS

Section 2 includes responses to the comment letters received during the public review period. The following organizations, individuals, and state, local, and regional agencies provided written comments during the comment period.

A. California Department of Fish and Wildlife (May 18, 2015)

B. East Bay Regional Park District (May 13, 2015)

C. West Contra Costa Transportation Advisory Committee (May 11, 2015)

D. Contra Costa County Flood Control District (May 13, 2015)

E. Contra Costa Environmental Health (May 13, 2015)

F. East Bay Municipal Utility District (May 7, 2015)

G. Trails for Richmond Action Committee (May 6, 2015)

H. West County Wastewater District (May 26, 2015)
May 18, 2015

Ms. Jonelyn Whales
City of Richmond
450 Civic Center Plaza
Richmond, CA 94804

Dear Ms. Whales:

Subject: Atlas Road Industrial Building (Steelscape) Project, Mitigated Negative Declaration, SCH #2015042073, City of Richmond, Contra Costa County

The California Department of Fish and Wildlife (CDFW) has reviewed the documents provided for the subject project, and we have the following comments.

Please provide a complete assessment (including but not limited to type, quantity and locations) of the habitats, flora and fauna within and adjacent to the project area, including endangered, threatened, and locally unique species and sensitive habitats. The assessment should include the reasonably foreseeable direct and indirect changes (temporary and permanent) that may occur with implementation of the project. Rare, threatened and endangered species to be addressed should include all those which meet the California Environmental Quality Act (CEQA) definition (see CEQA Guidelines, Section 15380). CDFW recommended survey and monitoring protocols and guidelines are available at http://www.CDFW.ca.gov/bioeq1data/cnddb/pdfs/Protocols_for_Surveying_and_Evaluating_Impacts.pdf.

Please be advised that a California Endangered Species Act (CESA) Permit must be obtained if the project has the potential to result in take of species of plants or animals listed under CESA, either during construction or over the life of the project. Issuance of a CESA Permit is subject to CEQA documentation; therefore, the CEQA document must specify impacts, mitigation measures, and a mitigation monitoring and reporting program. If the project will impact CESA listed species, early consultation is encouraged, as significant modification to the project and mitigation measures may be required in order to obtain a CESA Permit.

For any activity that will divert or obstruct the natural flow, or change the bed, channel, or bank (which may include associated riparian resources) of a river or stream, or use material from a streambed, CDFW may require a Lake and Streambed Alteration Agreement (LSAA), pursuant to Section 1600 et seq. of the Fish and Game Code, with the applicant. Issuance of an LSAA is subject to CEQA. CDFW, as a responsible agency under CEQA, will consider the CEQA document for the project. The CEQA document should fully identify
the potential impacts to the stream or riparian resources and provide adequate avoidance, mitigation, monitoring and reporting commitments for completion of the agreement. To obtain information about the LSAA notification process, please access our website at https://www.wildlife.ca.gov/Conservation/LSA; or to request a notification package, contact CDFW's Bay Delta Regional Office at (707) 944-5500.

If you have any questions, please contact Mr. Robert Stanley, Environmental Scientist, at (707) 944-5573; or Ms. Anne Ferranti, Senior Environmental Scientist (Supervisory), at (707) 944-5554.

Sincerely,

Scott Wilson
Regional Manager
Bay Delta Region

cc: State Clearinghouse
Response to Comment A-1: A detailed biological resources assessment was prepared for the project and summarized in the Draft Initial Study. The full report is included as Appendix B to this Comments and Responses document. It is acknowledged that the project applicant would be required to obtain any applicable CESA permits.
May 13, 2015

Jonelyn Wales, Senior Planner
City of Richmond Planning Division
450 Civic Center Plaza, 2nd Floor
Richmond, CA 94804

RE: PLN14-119, Atlas Road Industrial Building Project

Dear Ms. Wales,

The East Bay Regional Park District (Park District) has reviewed the draft Initial Study and Mitigated Negative Declaration (IS/MND) for the proposed industrial building project at 2995 Atlas Road. The project site is located within the alignment of a planned extension of the San Francisco Bay Trail, and the Park District holds a trail easement that crosses the project site as part of this alignment. The Park District was first approached by the project applicant, LDK Ventures, LLC, in December of 2013 to initiate discussions on refining the trail easement alignment and developing appropriate trail design and construction specifications. Since that time, Park District staff has reached agreement with LDK Ventures on a suitable trail alignment and design. At an April 3, 2015 meeting at Richmond City Hall attended by LDK Ventures, Park District staff, City staff, and a representative from Trails for Richmond Action Committee (TRAC), LDK Ventures agreed to incorporate the construction of a Class I trail into the project, and to complete this segment of the Bay Trail to Park District design specifications. Our understanding from that meeting is that the City will condition issuance of the first certificate of occupancy for the industrial building on the recordation of the trail easement and construction of the Class I trail segment.

The Park District requests that the project description contained in the IS/MND be revised to reflect the above understanding that construction of a new, approximately one-half mile segment of Class I Bay Trail is part of the overall project. Under the heading “Trail Easement” on page 4 of the IS/MND, the language should reflect that the project applicant will construct the trail to be operated and maintained by the Park District. Under the heading “Project Construction Schedule and Activities” on page 9, construction of the trail and associated improvements should be added, either as a distinct phase or as part of one of the listed phases. And finally under Section “XV. RECREATION” within the environmental impact checklist (page 74), the language should reflect that construction of the trail is part of the project.
The Park District appreciates the opportunity to review the draft IS/MND and provide these comments. We look forward to working with the City and LDK Ventures to bring the addition of a critical link in the San Francisco Bay Trail to fruition. Please feel free to correspond with me at (510) 544-2624, or by email at athomson@ebparks.org.

Sincerely,

Annie R. Thomson
Senior Planner

cc: Alan Hersh, LDK Ventures, LLC
Bruce Beyaert, TRAC Chair
Mike Reeves, Land Acquisition Specialist, EBRPD
Response to Comment B-1: The comment is correct in that the City will condition issuance of the first certificate of occupancy for the building on recordation of the trail easement and construction of the Class I trail segment.

Response to Comment B-2: The suggested revisions have been incorporated into the Final Initial Study as follows (new text is underlined):

On p.ii, last paragraph:

Trail Easement and Construction
The project would include the dedication of a trail easement and construction of a Class I multi-purpose trail by the applicant, to be operated and maintained by the East Bay Regional Park District. Fencing is proposed to separate the project facilities from the proposed trail. The chain link fence would be eight feet high, and black vinyl coated for aesthetic and security purposes, and would be located at least four feet away from the trail. The project proposes to landscape the project side of the fence to minimize views of the warehouse project from the trail. Most portions of the fence would be at least fifteen feet from the project’s paved areas with many areas provided with up to thirty-five feet of landscaped buffer. The trail section is diagrammed in Appendix C to this document.

On p. 9, first paragraph, the following bullet is added:
• Construction of multi-purpose trail.

On p. 74, Item b, the paragraph is replace with the following:

b. No Impact. The project would include provision of an easement and construction of a recreational trail segment adjacent to the site, for maintenance and management by the EBRPD. This trail would not have adverse impacts to the environment, as detailed in the technical analyses in this document.
Dear Ms. Whales,

Thank you for the notice regarding a mitigated negative declaration for the Atlas Road Industrial Building Project (PLN14-119, Assessor Parcel No. 405-590-008). The West Contra Costa Transportation Advisory Committee (WCCTAC) manages a transportation mitigation fee program on behalf of its local member jurisdictions. Based on the information provided, the proposed project is likely subject to this mitigation fee which would be collected by Richmond on behalf of WCCTAC at the time building permits are issued.

The 30-day notice notes that the proposed project could have significant effect on the environment. The City of Richmond may wish to consider as a condition of the project’s approval the following mitigations:

1. Property owner, management and/or business owner should register with 511ContraCosta.org to receive ongoing information about transportation alternatives and incentives for the employer and employees.

Please feel free to contact me if you have any questions.

Leah Greenblat, Project Manager
West Contra Costa Transportation Advisory Committee (WCCTAC)
6333 Potrero Avenue, Suite 100
El Cerrito, CA 94530
510.210.5935
Response to Comment C-1. The comment is noted. The following is added as Mitigation XIV-2 on p. 81 of the IS:

Mitigation Measure XIV-2: The project applicant shall register with 511ContraCosta.org to receive ongoing information about transportation alternatives and incentives for the employers and employees.
May 13, 2015

Jonelyn Whales, Senior Planner
City of Richmond
Planning Division
450 Civic Center Plaza, 2nd Floor
Richmond, CA 94804

RE: Project Number PLN14-119, Atlas Road Industrial Bldg.
Our File: 31106 405-590-008

Dear Ms. Whales:

We received the 30-Day Notice of Availability (NOA) and Intent to Adopt a Mitigated Negative Declaration (MND) and Initial Study (IS) for the Atlas Road Industrial Building Project, APN 405-590-008. The project is located on a 42.14-acre site at 2995 Atlas Road, at the corner of Atlas Road and Giant Road in the north part of the City of Richmond. The project consists of constructing a new 707,820 square foot building and paving an area of approximately 957,751 sq. ft. We have the following comments:

1. The proposed project is located in Drainage Area 111, an unformed drainage area. Therefore, there are no drainage area fees due at this time.

2. Since the project will be replacing the original 563,500 sq. ft. building with a new 707,820 sq. ft. building, the amount of runoff will increase proportionally to the additional amount of impervious areas. We recommend that the additional runoff be mitigated, so that the amount of runoff for post-project conditions does not exceed the pre-project conditions.

3. We recommend that all stormwaters originating or entering the proposed development be collected and conveyed, without diversion of the watershed, to the nearest natural watercourse with defined bed and banks or to an adequate man-made drainage facility.

4. We recommend that the IS discuss the impacts of the runoff from the project site to the existing drainage facilities. The discussion should include an analysis of the capacity of the existing drainage facilities that may be affected by the proposed project and any drainage problems in the downstream areas.
5. We recommend that the Hydrology/Water Quality Section quantify the amount of runoff that would be generated by the project and discuss how the runoff entering and originating from the site would be distributed between the natural watercourses, the detention basins, and the man-made drainage facilities.

We appreciate the opportunity to comment on this project in regards to drainage matters. If you should have any further questions, you may contact me at (925) 313-2308 or by e-mail at rurbi@pw.cccounty.us.

Sincerely,

Rene Urbina, P.E.
Civil Engineer
Contra Costa County Flood Control
& Water Conservation District

cc:
Mike Carlson, Flood Control
Tim Jensen, Flood Control
Teri E. Rie, Flood Control
Alan Hersh, LDK Ventures, LLC
3140 Peacemaker Way
McCullian, CA 95652.
CONTRA COSTA COUNTY FLOOD CONTROL DISTRICT

Response to Comment D-1: As described on pp. 58-59 of the Initial Study, the applicant has prepared preliminary Grading/Drainage and C-3 Stormwater Control Plans for the project. (See Appendix D). That plan would reduce peak runoff from the site compared with existing conditions. It should be noted that the project building, although larger than the former building on the site, would not increase impervious surfaces on the site because it would replace existing impervious paved parking areas.
May 13, 2015

Jonelyn Whales, Senior Planner
City of Richmond Planning Division
450 Civic Center Plaza, 2nd Floor
Richmond, CA 94804

RE: PLN14-119 (Proposed warehouse facility)
2955 Atlas Rd., Richmond
APN 405-590-008

Dear Ms. Jonelyn:

The Contra Costa Environmental Health Division (CCEHD) has received a request for agency comments for the above referenced project. The following are our general comments if the project is served by public sewer and public water:

1. A permit from CCEHD is required for any well or soil boring prior to commencing drilling activities, including those associated with water supply, environmental investigation and cleanup, or geotechnical investigation.

2. Any abandoned wells (water, environmental, or geotechnical) and septic tanks must be destroyed under permit from CCEHD. If the existence of such wells or septic tanks are known in advance or discovered during construction or other activities, these must be clearly marked, kept secure, and destroyed pursuant to CCEHD requirements.

3. The project documents reference a geotechnical report and associated soil borings. Geotechnical borings require a permit from CCEHD; our agency does not have a record of recent permits issued for such activity at this location.

These comments do not limit an applicant’s obligation to comply with all applicable laws and regulations. If you should have any questions, please do not hesitate to call me at (925) 692-2535.

Sincerely,

Joseph G. Dozer
Supervising Environmental Health Specialist

cc: Salvador Ruiz, Environmental Health Specialist

JGD:tf
CONTRA COSTA ENVIRONMENTAL HEALTH

Response to Comment E-1. The comments are noted. The City will require that the Project applicant obtain all necessary permits for any additional soil borings. No septic tank removal or well closures are proposed as part of the Project.
May 7, 2015

Jonelyn Whales, Senior Planner
City of Richmond Planning and Building Services Department
450 Civic Center Plaza
Richmond, CA 94804

Re: Draft Initial Study and Mitigated Negative Declaration – Atlas Road Industrial Building Project, City of Richmond File No. PIN-14-119

Dear Ms. Whales:

East Bay Municipal Utility District (EBMUD) appreciates the opportunity to comment on the Mitigated Negative Declaration for the Atlas Road Industrial Building Project located in the City of Richmond (City). EBMUD has the following comments.

WATER SERVICE

Pursuant to Section 15155 of the California Environmental Quality Act Guidelines and Sections 10910-10915 of the California Water Code, the proposed project meets the threshold requirement for an assessment of water supply, because the entire scope of the project includes more than 650,000 square feet of floor area. The project sponsor should contact EBMUD and request a Water Supply Assessment (WSA). EBMUD requires the project sponsor to provide future water demand data and estimates for the project site for the analysis of the WSA. Please be aware that the WSA can take up to 90 days to complete from the day on which the request is received.

EBMUD’s Central Pressure Zone, with a service elevation between 0 and 100 feet, will serve the proposed development. Off-site pipeline improvements, at the project sponsor’s expense, may be required to serve the proposed development depending on the fire flow requirements set by the local fire department. Off-site pipeline improvements include, but are not limited to, replacement of existing pipelines to the project site. When the development plans are finalized, the project sponsor should contact EBMUD’s New Business Office and request a water service estimate to determine costs and conditions for providing additional water service to the development. Engineering and installation of water mains, off-site pipeline improvements, and water services require substantial lead time, which should be provided for in the project sponsor’s development schedule.
WATER CONSERVATION

The proposed project presents an opportunity to incorporate water conservation measures. EBMUD requests that the City include in its conditions of approval a requirement that the project sponsor comply with Assembly Bill 325, "Model Water Efficient Landscape Ordinance," (Division 2, Title 23, California Code of Regulations, Chapter 2.7, Sections 490 through 495). The project sponsor should be aware that Section 31 of EBMUD’s Water Service Regulations requires that water service shall not be furnished for new or expanded service unless all the applicable water-efficiency measures described in the regulation are installed at the project sponsor’s expense.

If you have any questions concerning this response, please contact Timothy R. McGowan, Senior Civil Engineer, Major Facilities Planning at (510) 287-1981.

Sincerely,

David J. Rehnstrom
Manager of Water Distribution Planning

cc: Alan Hersh
Senior Vice President
LDK Ventures
3140 Peacekeeper Way
McClellan, CA 95652
EAST BAY MUNICIPAL UTILITY DISTRICT

Response to Comment F-1. The applicant will prepare a Water Supply Assessment as a condition of project approval, and is currently preparing a project demand assessment for EBMUD’s consideration and use in the agency’s Water Supply Assessment. It is noted that off-line improvements may be required by EBMUD to serve the project.

Response to Comment F-2: The project applicant has been informed of EBMUD’s water conservation requirements.
May 6, 2015

Ms. Jonelyn Whales, Senior Planner
City of Richmond

Dear Ms. Whales:

TRAC, the Trails for Richmond Action Committee, would like to comment on the April 2015 Draft IS/MND for the Atlas Road Industrial Building Project (PLN14-119). Our comments focus on the need for construction of the Bay Trail section planned on the site to be incorporated in project plans, adopted as a mitigation measure or adopted as an enforceable condition of approval. This is necessary for consistency with active transportation policies, plans and programs adopted in Richmond's General Plan 2030 and Bicycle Master Plan.

The project site is a key location on the planned San Francisco Bay Trail route as shown on the attached Bay Trail map for Richmond and Map 4.1 of Richmond General Plan 2030.

Therefore, for consistency with the General Plan, the project should include construction of the Class I Bay Trail section planned on the site, e.g.:

- **Policy CR1.5**: "... require new development and redevelopment projects to provide pedestrian and bicycle amenities, streetscape improvements and linkages to planned and completed City and regional multi-use trails"
- **Action CR1.D**: "Require new development and redevelopment projects to be pedestrian and bicycle-friendly, and to provide adequate connections to the existing and proposed bicycle and pedestrian network."

Consistency with adopted plans is a major factor for CEQA review, e.g. a DEIR must discuss inconsistencies with general and regional plans (Guidelines §15125(d)). Therefore, IS/MND Section X.b Land Use and Planning and Section XVI.a. Transportation and Traffic should recognize
that the project does have potentially significant impacts in conflicting with applicable plans and policies of the City.

These potentially significant impacts can be mitigated to less than significant by adopting the following mitigation measure:

A Class I San Francisco Bay Trail section shall be constructed by the applicant within the easement granted to East Bay Regional Park District (EBRPD) in accordance with EBRPD design specifications prior to issuance of the first certificate of occupancy.

TRAC hopes that these comments will prove helpful to the City and the applicant.

Sincerely,

Bruce Beyaert, TRAC Chair

Attachments:
Richmond Bay Trail Map
Richmond General Plan Map 4.1

cc: Mr. Richard Mitchell
Mr. Alan Hersh
Mr. Michael Reeves
Note: Larger format maps are available for view or purchase at the Planning and Building Services Department.
Response to Comment G-1. Comment noted. As described in Responses to Comments B-1 and B-2, the Project proposes to provide an easement for, and construct, a multi-purpose trail adjacent to the site.
May 26, 2015

City of Richmond Planning Division
Joneylyn Whales, Senior Planner
450 Civic Center Plaza, 2nd Floor
Richmond, CA 94804

Subject: Atlas Road Industrial Building (Steelscape) Project
(APN 405-590-008)

Dear Joneylyn Whales:

The West County Wastewater District (WCWD) appreciates this opportunity to comment on the 30-day Notice of Availability and Intent to Adopt a Proposed Mitigated Negative Declaration for the proposed project at 2995 Atlas Road, Richmond, California (City of Richmond Project File No. PLN14-119).

Page 3 of the Draft Initial Study and Intent to Adopt a Proposed Mitigated Negative Declaration for the Atlas Road Industrial Building (Steelscape) Project mentions the anticipated construction of a 707,820 square-foot building. The building includes a 667,820 square-foot warehouse section, in addition to a 40,000 square-foot office section.

Wastewater service is available for this proposed development to the Project Sponsor subject to submitting and complying with the following:

1. The sanitary sewer plans have not been received. Contact WCWD regarding a possible point of connection and possible off-site improvements required on existing downstream sanitary sewer pipelines.

2. Submit two (2) sets of the Tentative Map, Geotechnical Reports and Grading Plans for WCWD approval. The fees will be prepared upon the submission of the Tentative Map, Geotechnical Reports and Grading Plans.

3. It is the Project Sponsor’s responsibility to construct sanitary sewer mains, laterals and appurtenances to the nearest available existing WCWD facility. A one hundred percent (100%) performance and maintenance bond shall be filed with WCWD for the sanitary sewer main prior to start of construction.

4. Submit two (2) sets of the improvement plans and the engineer’s construction cost estimate for the sanitary sewer main extension for WCWD approval. Three (3) additional sets will be requested upon approval. The sewer main construction permit must be obtained from WCWD prior to the start of construction.

5. Submit the Grant of Easements for all sanitary sewer mains intended for dedication to WCWD. The Grant shall include sanitary sewer mains located within dedicated street rights-of-ways. Such easements shall be a minimum of...
fifteen (15) feet wide and twenty (20) feet wide where the depth of the line is in excess of ten (10) feet deep. Paved access shall be provided to all manholes and rodding inlets for maintenance trucks.

6. The sanitary sewer connection fees for a building containing 667,720 square-feet of warehouse space and 40,000 square-feet of office space must be paid prior to the inspection and approval of the building sewer laterals. A fee estimate will be prepared upon the submission of plans.

7. Obtain a permit for each building from WCWD prior to the inspection and approval of the building sewer laterals.

8. WCWD approval is required prior to finalizing the permit or prior to granting the certificate of occupancy.

Sincerely,

KEN COOK, PE
ENGINEERING SERVICES MANAGER

By: ARMONDO HODGE
Senior Engineering Technician

KC/AH:ilm-b

Attachments: City of Richmond 30-day Notice of Availability/Atlas Road Building (Steelscape) Project (pg. 1), April 2015
City of Richmond Draft IS/MND Atlas Road Building (Steelscape) Project (pg. 3), April 2015
City of Richmond Draft IS/MND Atlas Road Building (Steelscape) Project (pg. 4), April 2015
WEST COUNTY WASTEWATER DISCTRICT

Response to Comment H.1: The WCWD’s requirements for sanitary sewer connections for the Project are acknowledged and have been provided to the applicant.
APPENDICES

A. City of Richmond Notices of Availability and Intent to Adopt a Mitigated Negative Declaration. April 10, 2015.

C. East Bay Regional Park District Typical AC Trail Section

E. Mitigation Monitoring and Reporting Program.
APPENDIX A: NOTICES OF AVAILABILITY
NOTICE IS HEREBY GIVEN that the City of Richmond Planning and Building Services Department has prepared an Initial Study and Mitigated Negative Declaration for environmental review in accordance with the California Environmental Quality Act (CEQA) of 1970, as amended, and the City of Richmond’s Guidelines and Procedures for Implementation of CEQA.

Project Number: PLN14-119
Project Title: Atlas Road Industrial Building Project
Project Applicant: LDK Ventures, LLC
Project Location: 2995 Atlas Road, Richmond California
Assessor Parcel No.: 405-590-008

Project Description: The proposed project is located on a 42.14 acre site at 2995 Atlas Road, at the corner of Atlas Road and Giant Road. The site previously included two manufacturing warehouse buildings, and one 8,800 square foot office building, totaling approximately 583,500 square feet. The site previously included two manufacturing/warehouse buildings, and one 8,800-square foot office building, totaling approximately 563,500 square feet. The plant also included infrastructure, facility support areas and paved areas. A steel galvanizing operation formerly existed in the 275,500 square-foot, northern building (the Galvanizing Line Building), which was constructed in 1965/1966 by Bethlehem Steel. The second building approximately 279,200 square feet (constructed in 1990/1991) was used as a coil coating, paint line operation (Paint Line Building). This Initial Study (IS) evaluates the impacts of the construction and operation of the proposed new building and associate facilities. The proposed project involves construction of a single large logistics building and associated parking, loading, and landscaped areas on the cleared site. The proposed new building would include approximately 40,000 square feet of office space and 667,820 square feet of warehouse space. The footprint of the new building would be similar as that of the previous structures and hardscape. The height of the building proposed would vary from 40 feet to 43 feet, and its length would be 1,506 feet. The project would include the dedication of a multi-purpose trail easement for trail construction and maintenance by the East Bay Regional Park District. Fencing is proposed to separate the project facilities from the proposed trail.

The basis for proposing a Mitigated Negative Declaration is the finding that although the proposed project could have a significant effect on the environment, all potential impacts could be mitigated to less-than-significant levels through implementation of mitigation measures, which would be adopted as conditions of approval for the project.

Hazardous Materials Disclosure per Public Resources Code Section 15072(g)(6): A review of regulatory databases, including listed hazardous material release sites compiled pursuant to Government Code 65962.5, did not identify any hazardous materials on the site.

Public Review and Comment Period: Comments on the Draft MND, sent in writing, must be received by 5:00 p.m. on May 11, 2015, at the following address:

Jonelyn Whales, Senior Planner
City of Richmond Planning Division
450 Civic Center Plaza, 2nd Floor, Richmond, CA 94804
(510) 620-6785

Report Availability: A copy of the Draft Initial Study and Mitigated Negative Declaration are available for review online at www.ci.richmond.ca.us/planning. Copies are also available for review at the following locations: Richmond Public Library Main Branch 325 Civic Center Plaza, Richmond, CA 94804; Richmond Planning and Building Services Department, City Hall, 450 Civic Center Plaza, Richmond, CA, 94804.

Start of Public Review: April 10, 2015
End of Public Review: May 11, 2015
NOTICE IS HEREBY GIVEN that the City of Richmond Planning and Building Services Department has extended the comment period for the Initial Study and Mitigated Negative Declaration for the Atlas Road Industrial project. The public comment review period has been extended from May 11, 2015 to May 26, 2015.

Project Number: PLN14-119
Project Title: Atlas Road Industrial Building Project
Project Applicant: LDK Ventures, LLC
Project Location: 2995 Atlas Road, Richmond California
Assessor Parcel No.: 405-590-008

Project Description: The proposed project is located on a 42.14 acre site at 2995 Atlas Road, at the corner of Atlas Road and Giant Road. The site previously included two manufacturing warehouse buildings, and one 8,800 square foot office building, totaling approximately 583,500 square feet. The site previously included two manufacturing/warehouse buildings, and one 8,800-square foot office building, totaling approximately 563,500 square feet. The plant also included infrastructure, facility support areas and paved areas. A steel galvanizing operation formerly existed in the 275,500 square-foot, northern building (the Galvanizing Line Building), which was constructed in 1965/1966 by Bethlehem Steel. The second building approximately 279,200 square feet (constructed in 1990/1991) was used as a coil coating, paint line operation (Paint Line Building). This Initial Study (IS) evaluates the impacts of the construction and operation of the proposed new building and associate facilities. The proposed project involves construction of a single large logistics building and associated parking, loading, and landscaped areas on the cleared site. The proposed new building would include approximately 40,000 square feet of office space and 667,820 square feet of warehouse space. The footprint of the new building would be similar as that of the previous structures and hardscape. The height of the building proposed would vary from 40 feet to 43 feet, and its length would be 1,506 feet. The project would include the dedication of a multi-purpose trail easement for trail construction and maintenance by the East Bay Regional Park District. Fencing is proposed to separate the project facilities from the proposed trail.

The basis for proposing a Mitigated Negative Declaration is the finding that although the proposed project could have a significant effect on the environment, all potential impacts could be mitigated to less-than-significant levels through implementation of mitigation measures, which would be adopted as conditions of approval for the project.

Hazardous Materials Disclosure per Public Resources Code Section 15072(g)(6): A review of regulatory databases, including listed hazardous material release sites compiled pursuant to Government Code 65962.5, did not identify any hazardous materials on the site.

Public Review and Comment Period: Comments on the Draft MND, sent in writing, must be received by 5:00 p.m. on May 26, 2015, at the following address:

Jonelyn Whales, Senior Planner
City of Richmond Planning Division
450 Civic Center Plaza, 2nd Floor, Richmond, CA 94804
(510) 620-6785

Report Availability: A copy of the Draft Initial Study and Mitigated Negative Declaration are available for review online at www.ci.richmond.ca.us/planning. Copies are also available for review at the following locations: Richmond Public Library Main Branch 325 Civic Center Plaza, Richmond, CA 94804; Richmond Planning and Building Services Department, City Hall, 450 Civic Center Plaza, Richmond, CA, 94804.

APPENDIX B: BIOLOGICAL RESOURCES STUDY
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... I

1.0 INTRODUCTION ... 1-1
 1.1 PROPERTY DESCRIPTION ... 1-1
 1.2 SITE HISTORY AND PREVIOUS INVESTIGATIONS ... 1-1
 1.3 SUMMARY OF ACTIVITIES ... 1-1

2.0 SITE CHARACTERISTICS ... 2-1
 2.1 TOPOGRAPHY, GEOLOGY, AND HYDROLOGY .. 2-1
 2.2 ECOLOGICAL CHARACTERISTICS ... 2-2
 2.3 LAND USE SURROUNDING THE SITE ... 2-3

3.0 BIOLOGICAL ANALYSIS .. 3-1
 3.1 EXISTING CONDITIONS ... 3-1
 3.2 CONCLUSIONS ... 3-3

4.0 ACRONYMS AND ABBREVIATIONS ... 4-1

5.0 REFERENCES ... 5-1

LIST OF FIGURES

Figure 1-1 Site Map ... 1-3
Figure 2 National Wetland Inventory Map (USFWS 2014) .. 3-2
Figure 3 California Natural Diversity Database Query Results (CNDDB 2014) 3-3

APPENDICES

APPENDIX A—Leading Edge Pest Management, Inc Inspection Report
EXECUTIVE SUMMARY

Tetra Tech, Inc. (Tetra Tech) provides project management and technical environmental services in support of a biological analysis effort at Former Richmond Steelscape Facility (also referred to herein as the “Site”) under contract with LDK Ventures, LLC. The purpose of the biological analysis effort is to evaluate the biological constraints at the Site.

The 41-acre site consists of two main former manufacturing/warehouse buildings, one approximately 8,800-square foot office building, various facility support areas, and paved and unpaved outdoor areas. A steel galvanizing line was formerly operated in the northern building (the former Galvanizing Line Building), an approximately 275,500-square foot building built in 1991. Both of the primary buildings at the Site contain sub-grade areas including basements in the Galvanizing Line Building and trenches in the Paint Line Building.

The majority of the Site has been developed and the undeveloped areas contain non-native annual grassland vegetation comprised of species that are relatively common to the region. No special status plant or animal species have been found or would be expected to occur on the Site. The drainage ditch that runs parallel to the northern portion of the Site supports riparian habitat, but development of the Site will not impact this area. The mapped wetlands located off-Site north of the railroad tracks are isolated from the Site by the railroad track berm, and no indirect impacts to these wetlands are anticipated.

No significant biological constraints exist at the Site, and development of the Site will not impact any sensitive plant communities or wildlife habitats.
1.0 INTRODUCTION

Tetra Tech, Inc. (Tetra Tech) provides project management and technical environmental services in support of a biological analysis effort at Former Richmond Steelscape Facility (also referred to herein as the “Site”) under contract with LDK Ventures, LLC.

The purpose of the biological analysis effort is to evaluate the biological constraints at the Site.

1.1 PROPERTY DESCRIPTION

The 41-acre site consists of two main former manufacturing/warehouse buildings, one approximately 8,800-square foot office building, various facility support areas, and paved and unpaved outdoor areas. A steel galvanizing line was formerly operated in the northern building (the former Galvanizing Line Building), an approximately 275,500-square foot building built in 1991. Both of the primary buildings at the Site contain sub-grade areas including basements in the Galvanizing Line Building and trenches in the Paint Line Building. The assessor’s parcel number for the site is 405-03-31. A Site map is provided in Figure 1-1 (ENVIRON 2013).

1.2 SITE HISTORY AND PREVIOUS INVESTIGATIONS

The Site was developed as a steel galvanizing plant in 1965 by Bethlehem Steel on undeveloped land. In 1979, the Site was sold to Waisco, which continued to operate the galvanizing line and constructed the Paint Line Building in 1990–1991 for coil-coating operations. Material Sciences Corporation (MSC) bought the property in 1997 and began operating the Galvanizing Line Building as MSC Pinole Point Steel, Inc. and the Paint Line Building as MSC Pre Finish Metals, Inc. In 2002, Steelscape purchased the Site from MSC. Steelscape ceased operations at the Site in 2005/2006. In 2008, Advantage Battery Corporation acquired the property from Steelscape.

1.3 SUMMARY OF ACTIVITIES

In order to evaluate any biological constraints that may be imposed from development activities at the Site, a biological analysis was conducted. The analysis of potential biological constraints was based on review of various information sources including: the California Natural Diversity Database, the U.S. Fish and Wildlife Service Critical Habitat Mapper, National Wetlands Inventory Wetland Mapper, and previous environmental documents. One Site visit was conducted on 19 June 2014.
Figure 1-1 Site Map
2.0 SITE CHARACTERISTICS

2.1 TOPOGRAPHY, GEOLOGY, AND HYDROLOGY

The Site is located on flat terrain near San Pablo Bay approximately 33 feet above mean sea level (msl). The Site topography slopes slightly to the north towards San Pablo Bay. The following summary of soil types at the Site was obtained from the United States Department of Agriculture, Natural Resource Conservation Service Soil Data Mart (2007). The dominant soil component at the Site is listed as Reyes silty clay and the surface texture of the soil is described as silty clay. Clay comprises 40 to 60 percent of the soil. The available water capacity is between 0.08 and 0.12 inch of water per inch of soil. Surface water runoff is low. The risk of corrosion is high for uncoated steel and concrete. The pH of the soil generally ranges between 3.6 and 9.0. However, the pH of the soil in the vicinity of the historical chromium spill ranges between 5.6 and 11.0. The soil meets the requirements for a hydric soil.

The Site is located in the Coast Ranges geologic province. The area was formed by the accretion of an island arc onto the western edge of the North American plate, which uplifted the sea shelves and allowed sediment to be trapped in the basin (Stoffer 2002). Quaternary sediments are underlain by the Mesozoic Franciscan Complex, which presumably underlies the entire San Francisco Bay Area east of the San Andreas Fault. The Franciscan Complex is composed of weakly to strongly metamorphosed greywacke, argillite, basalt, serpentinite, chert, limestone, and other rocks (Blake et al. 2000). Other geologic units that may underlie the region include the Santa Clara, Alameda, and Temescal Formations. The Early Pleistocene Santa Clara Formation consists of alluvial fan deposits inter-fingered with lake, swamp, river channel, and flood plain deposits, and ranges from 300 to 600 feet thick. The Late Pleistocene Alameda Formation includes a sequence of alluvial fan deposits bounded by mud deposits and ranges from 26 to 245 feet thick. The Early Holocene Temescal Formation is an alluvial deposit consisting primarily of silts and clays with some gravel layers, and ranges from 1 to 50 feet thick (California Department of Water Resources 2004). The Site is situated on undivided Quaternary deposits along the edge of San Pablo Bay.

The main geologic hazards are likely to affect the Site are earthquakes from the Hayward Fault, (located less than 5 miles east of the Site) and the San Andreas Fault (located 10 miles west of the Site).

Hydrogeological data were obtained from the California Department of Water Resources (2004) Groundwater Bulletin 118, a statewide inventory of groundwater basins that includes individual hydrogeologic descriptions for each delineated groundwater basin and related subbasins in California.

The Site is located in the East Bay Plain subbasin of the Santa Clara Valley Groundwater Basin. The Basin contains many creeks, including the Wildcat, San Leandro, and San Pablo Creeks, and is bounded on the north by San Pablo Bay and on the east by contact with Franciscan Basement Rock. There are four main water-bearing formations in the basin, which have a combined thickness of approximately 1,000 feet below ground surface (bgs). The water-bearing formations include the Early Pleistocene Santa Clara Formation, Late Pleistocene Alameda Formation, Early Holocene Temescal Formation, and artificial fill. Historic water levels in the deep aquifer have varied between 10 and 140 feet below msl since the early 1950s, with the lowest level occurring in 1962. Since then, water levels have been slowly rising and as of 2000 were very near surface levels. Total storage capacity in the subbasin has been calculated at 2,670,000 acre-feet, with an average specific yield of 6 percent. Calculated available storage to a depth of 1,000 feet below msl was determined to be 2.5 million acre-feet, and calculated storage in sediments above msl was determined to be 80,000 acre-feet. Calcium bicarbonate and certain nitrate impairments were found to be present in well water samples, but plumes were localized to within 50 feet of the surface.
According to the Water Board Basin Plan, the Site is located in San Pablo Basin (SFBRWQCB 2011). Garrity Creek located approximately 1.2 miles east of the Site is the nearest significant water body. Garrity Creek is beneficially used by wildlife, aquatic life, and recreation. However, contaminants at the Site will not impact water quality at Garrity Creek due to the distance from this water body.

During previous subsurface investigations at the Site, it was determined that the site is underlain by fill over natural alluvial soils. The fill was between 0.5 and 1.5 feet thick in the areas explored. Beneath the fill, natural soil consists of olive brown to light yellow brown clayey silt with sand. This clayey silt unit was between 10 and 16 feet thick and extended to depths of 11 to 17 feet bgs. The clayey silt unit was underlain by an interval of interbedded pale olive to yellow brown silty sands and silty clay layers with occasional gravelly zones. This interbedded interval ranged in thickness from 2 to 8 feet, and the silty sand layers were usually saturated. The interbedded sediments were underlain by dark gray brown to dark brown clay at depths below 20–25 feet (ENVIRON 2002).

2.2 ECOLOGICAL CHARACTERISTICS

The Site is located within the California Coastal Chaparral Forest Shrub Province. This province includes the discontinuous coastal plains, low mountains, and interior valleys adjacent to the Pacific Ocean from San Francisco to San Diego. Several tree species are endemic to the region, including the Monterey cypress, Torrey pine, Monterey pine, and Bishop pine. The coastal plains and larger valleys have sagebrush and grassland communities. Riparian forests containing many broadleaf species grow along streams. On the hills and lower mountains, there is a sclerophyll forest consisting of low trees with small, leathery leaves that can withstand the lack of summer precipitation. Live oak or valley oak woodland is found here. On steep slopes too dry to support oak woodland or forest, much of the vegetation is scrub or chaparral, which consists of chamise and various manzanitas that are adapted to periodic fire disturbance. Exposed coastal areas support desert-like shrub communities called coastal scrub, dominated by coyote bush, California sagebrush, and bush lupine. Most of the coastal plains and interior valleys have been converted to urban use or irrigated agriculture. Blue gum eucalyptus and other species imported from Australia are abundant along much of the coastline as well as farther inland. The brushy rabbit is common, as is the opossum. Several species of seals and sea lions live along the California coast, and sea otters often float among kelp, feeding on sea urchins. Coastal California is a major migration route for birds, as well as the blue whale. Thousands of shore birds, ducks, and geese inhabit coastal estuaries, lagoons, and mudflats.

According to the California Wildlife Habitat Relationships System, 33 wildlife habitats occur in Contra Costa County. Of these habitats, the following may occur on or near the Site: annual grassland, barren, estuarine, perennial grassland, riverine, saline emergent wetland, and urban.

Endangered, threatened, and special-status species potentially occurring within the Site were identified by generating a list from the United States Fish and Wildlife Service (USFWS) database (USFWS 2014). The following species are listed on the USFWS Endangered Species Act list for Contra Costa County (2014): Amphibians - California tiger Salamander (Ambystoma californiense); Birds - California clapper rail (Rallus longirostris obsoletus); Crustaceans - California freshwater shrimp (Syncaris pacifica), Conservancy fairy shrimp (Branchinecta conservatio), Longhorn fairy shrimp (Branchinecta longianterenna), Vernal pool tadpole shrimp (Lepidurus packardi); Insects - Lange's metalmark butterfly (Apodemia mormo langei), Callippe silverspot butterfly (Speyeria callippe callippe); Mammals - San Joaquin kit fox (Vulpes macrotis mutica), and Salt marsh harvest mouse (Reithrodontomys raviventris).

The following species are under the classification of “threatened” under the Endangered Species Act list for Contra Costa County (2014): Amphibians-California red-legged frog (Rana draytonii); Crustaceans - Vernal pool fairy shrimp (Branchinecta lynchi); Fishes-Delta smelt (Hypomesus transpacificus); Insects -
Delta green ground beetle (*Elaphrus viridis*), Valley elderberry longhorn beetle (*Desmocerus californicus dimorphus*); Reptiles-Alameda whipsnake (striped racer) (*Masticophis lateralis euryxanthus*), and Giant garter snake (*Thamnophis gigas*).

2.3 LAND USE SURROUNDING THE SITE

The Site is bounded by Atlas Road to the southwest, a Whole Foods Distribution Center and United Parcel Service facility to the southeast, undeveloped property to the south and west, and a Southern Pacific Railroad corridor to the north. Point Pinole Regional Shoreline is located to the north and east, followed by San Pablo Bay. The closest residential areas are located approximately 0.25 mile to the south and approximately 0.75 mile to the east of the Site. The Site is located approximately 4.25 miles north of downtown Richmond, California.
3.0 BIOLOGICAL ANALYSIS

3.1 EXISTING CONDITIONS

The Site is located just east and south of Point Pinole Regional Park, near the shoreline of San Pablo Bay. It is located entirely on uplands that are separated from the bay and associated marshland habitat by the Union Pacific Rail Line. The 41-acre site consists of two main former manufacturing/warehouse buildings, one approximately 8,800-square foot office building, various facility support areas, and paved and unpaved outdoor areas. A steel galvanizing line was formerly operated in the northern building (the former Galvanizing Line Building), an approximately 275,500-square foot building built in 1991. Both of the primary buildings at the Site contain sub-grade areas including basements in the Galvanizing Line Building and trenches in the Paint Line Building.

The portions of the property that are not hardscaped support primarily ruderal grassland vegetation with scattered shrubs and landscape trees. The plant species characterizing the grasslands include non-natives such as wild oat (Avena fatua), soft chess (Bromus hordeaceus), ripgut brome (Bromus diandrus), prickly oxtail (Picris echioides), black mustard (Brassica nigra), wild radish (Raphanus sativa), and Italian ryegrass (Lolium perenne). Some native herbs including bird’s-foot trefoil (Lotus corniculatus) and gumplant (Brindelia camporum) are scattered throughout the grasslands. There are also occasional shrubs of coyote bush (Baccharis pilularis), blackberry (Rubus armeniacus), and fennel (Foeniculum vulgare).

Some Pampas grass (Cortaderia selloana) is beginning to colonize the asphalt areas.

Wildlife use of the Site is expected to consist primarily of species typically found in grasslands or ruderal habitats, although shorebirds and other marshland species could occasionally forage on the Site due to its proximity to the bay. Feral cats, jackrabbits, and deer have been reported on the property. Monarch butterflies are known to overwinter in a eucalyptus grove off-Site at the Point Pinole Regional Park. There is no eucalyptus groves located on-Site; therefore, the Monarch butterflies are not likely to overwinter on-Site and were not observed during the Site visit. Raptors such as the red-tailed hawk, red-shouldered hawk, Cooper’s hawk, and osprey could forage in the grasslands. The abandoned buildings could provide suitable habitat for barn owls and possibly bats; however, an inspection was conducted by Leading Edge Pest Management, Inc. in April 2014 and no evidence of rodents, bats, swallows, or owls was observed (Appendix A).

Drainage along the south side of the railroad tracks supports a combination of arroyo willow and blackberry. No surface water was present in these areas at the time of the survey and no emergent wetland plants were observed. This area is not mapped as a wetland by the National Wetlands Inventory (Figure 2).

There are several special status species occurrences recorded within 3 miles of the property (Figure 3). Most of those species are associated with salt marsh or emergent wetland habitat and would therefore not be expected to be present on the Site property, but they are found in the marsh outboard of the railroad tracks (Figure 2). One plant species, Santa Cruz tarplant (Holocarpha macradenia), is known to occur in coastal terrace prairie habitat and has been found historically within three miles of Point Pinole, although those locations have since been extirpated. This species is typically identifiable through October/November. It has not been observed on-Site in the past and was not observed during the Site visit.

The monarch butterfly overwinters at several sites around the bay area, including Point Pinole Regional Park. The butterflies typically arrive in October and cluster in a stand of eucalyptus trees at the western edge of the park. These trees provide the butterflies shelter from the wind and rain. Although monarch butterflies themselves are not conserved special status species, their colonies are typically protected...
because they are very site faithful. There are no eucalyptus stands present on the property and therefore are not anticipated to be present at the Site.

Figure 2 National Wetland Inventory Map (USFWS 2014)
3.2 CONCLUSIONS

The majority of the Site has been developed and the undeveloped areas contain non-native annual grassland vegetation comprised of species that are relatively common to the region. No special status plant or animal species have been found or would be expected to occur on the Site. The drainage ditch that runs parallel to the northern portion of the Site supports riparian habitat, but development of the Site will not impact this area. The mapped wetlands located off-Site north of the railroad tracks are isolated from the Site by the railroad track berm, and no indirect impacts to these wetlands are anticipated.

No evidence of rodents, bats, swallows, or owls was found during the inspection conducted by Leading Edge Pest Management, Inc. The buildings have not been heated or occupied for years and are not an attraction to animals.

In conclusion, no significant biological constraints exist at the Site, and development of the Site will not impact any sensitive plant communities or wildlife habitats.
4.0 ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgs</td>
<td>below ground surface</td>
</tr>
<tr>
<td>ENVIRON</td>
<td>ENVIRON International Corporation</td>
</tr>
<tr>
<td>MSC</td>
<td>Material Sciences Corporation</td>
</tr>
<tr>
<td>msl</td>
<td>mean sea level</td>
</tr>
<tr>
<td>SFBRWQCB</td>
<td>San Francisco Bay Regional Water Quality Control Board</td>
</tr>
<tr>
<td>Tetra Tech</td>
<td>Tetra Tech, Inc.</td>
</tr>
<tr>
<td>USFWS</td>
<td>United States Fish and Wildlife Service</td>
</tr>
</tbody>
</table>
5.0 REFERENCES

Blake, Jr., M.C., R.W. Graymer, and D.L. Jones

California Department of Fish and Game,
2014 California Natural Diversity Database. June.
http://imaps.dfg.ca.gov/viewers/cnndb_quickviewer/app.asp

California Department of Water Resources

ENVIRON International Corporation (ENVIRON)
2002 Phase II Investigation Report, Former Steelscape Facility, 2995 Atlas Road, Richmond, California. 18 September.

2013 Summary of Environmental Conditions, Former Steelscape Facility, 2995 Atlas Road, Richmond, California. 21 October.

San Francisco Bay Regional Water Quality Control Board (SFBWRQCB)
2011 San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan). December.

Stoffer, Philip

United States Department of Agriculture, Natural Resource Conservation Service

United States Fish and Wildlife Service (USFWS)

United States Fish and Wildlife Service (USFWS)
APPENDIX C: TYPICAL EAST BAY REGIONAL PARK DISTRICT TRAIL SECTION
NOTES:
1. MINIMUM AC THICKNESS 2.5"
2. MINIMUM AB THICKNESS 6"
3. THICKER AB REQUIRED IN EXPANSIVE SOILS
APPENDIX D: PRELIMINARY GRADING/DRAINAGE AND C.3 PLANS
APPENDIX E: MITIGATION MONITORING AND REPORTING PROGRAM
Mitigation Monitoring and Reporting Program
AIR QUALITY

Mitigation Measure III-1:
Project VOC emissions from architectural coating application shall be reduced to 54 lbs./day or less through the implementation of any of the following measures or some combination thereof as required:
- Stretch out the Building-Finishing phase to include more work days for architectural coating application;
- Use architectural coatings with a lower VOC content than BAAQMD regulations require; and/or
- Use building components that have had their surfaces factory-finished and so would reduce the need for on-site painting or finishing with VOC-containing materials.

Prior to the beginning of Project construction, final plans shall be submitted for City approvals that demonstrate attainment of the BAAQMD 54 lbs./day limit on VOC emissions during construction.

CULTURAL RESOURCES

Mitigation Measure V.1:
The developer shall inform all personnel connected with construction of the project of the possibility of finding archaeological resources. If such resources are encountered during construction, all work shall be halted within the area of the find and a qualified archaeologist shall be retained to ascertain the nature of the discovery, the significance of the find, and provide proper management recommendations. Project personnel shall not collect cultural resources found. Prehistoric cultural material includes, but is not limited to, chert or obsidian flakes, projectile points, mortars, and pestles, dark friable soil containing shell and bone dietary debris, heat-affected rock, human burials, shell midden deposits, hearth remains, and stone and/or shell artifacts. Historic material, including but not limited to, stone or adobe...
Identified Impact

<table>
<thead>
<tr>
<th>Identified Impact</th>
<th>Related Mitigation Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Disturbance of Buried Human Remains.</td>
<td>Mitigation Measure V.3 If human remains are found during project demolition and construction activities, the project proponent must contact the Contra Costa County Coroner. If the Coroner determines that the remains are not subject to his authority, he shall notify the Native American Heritage Commission who in turn must contact the NAHC within 24 hours if it is determined that the finds are of Native American origin. There shall be no further excavation or disturbance of the site or any nearby areas reasonably suspected to overlie adjacent human remains until the County Coroner is contacted. The NAHC shall contact a most likely descendant who shall have the opportunity to make a recommendation within 24 hours after being notified by the NAHC as to how the remains will be treated.</td>
</tr>
<tr>
<td>GEOLOGY AND SOILS</td>
<td>Mitigation Measure VI.1: The applicant shall provide a design-level geotechnical report to the City prior to any building permit approvals. The project shall comply with all foundation and other design criteria described in the preliminary and final geotechnical investigation. That report shall provide detailed design criteria for the project foundations; these criteria shall be followed in project foundation design. The project geotechnical investigation shall include recommendations that all structural, architectural, and mechanical details be designed to resist earthquake ground shaking, and those measures also shall be implemented in building and</td>
</tr>
</tbody>
</table>

Comments and Responses

ATLAS ROAD INDUSTRIAL BUILDING (STEELSCAPE) PROJECT

A-2
GREENHOUSE GAS EMISSIONS

Mitigation Measure VII-1: Project GHG emissions from operational sources shall be reduced to 4.6 metric tons per year per Project employee or less through the implementation of any of the following measures or some combination thereof as required. (Note: the GHG reductions shown for the mitigation measures below may not necessarily be additive in all combinations; for example, the reductions obtained by installing high efficiency lighting may not be additive with the reductions obtained by purchasing electricity from a clean-energy provider).

- **Install Solar Panels** – Generate renewable energy through installing solar panels on the roof, which can be used to offset GHG emissions. Based on a calculation using the PVWatts Calculator published by the National Renewable Energy Laboratory of the US Department of Energy, the Project can offset 591 MTCO₂e/year of GHG emissions by installing approximately 180,000 square feet of solar panels. The approximate net system cost could be roughly $10MM, including Federal and State tax rebates.¹

- **Purchase Electricity Through Marin Clean Energy (MCE)** - Marin Clean Energy (MCE) is a Community Choice Aggregator under California law that provides lower-CO₂ source electricity to area residents and business within their service area. MCE delivers power via PG&E, which continues to maintain the power transmission and distribution infrastructure.

¹ Estimated based on the 25-year system lifetime using the calculator provided by the Renewable & Appropriate Energy Laboratory of University of California at Berkeley. Available at: https://rael.berkeley.edu/berkeley/calculator#
<table>
<thead>
<tr>
<th>Identified Impact</th>
<th>Related Mitigation Measure</th>
<th>MONITORING</th>
<th>VERIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>electricity, and handle billing. The electricity MCE customers receive is deemed 50% to 100% renewable energy. By offering a much higher percentage of renewable energy than is available from PG&E, Marin Clean Energy lowers customers’ GHG emissions associated with electricity generation. The developer may reduce 552 MTCO₂e/year of GHG emissions associated with electricity usage through purchasing MCE’s Deep Green (i.e., 100% renewable) electricity product from MCE. The total estimated extra cost would be $4,000 per year based on the difference between PG&E and MCE rates for commercial/industrial customers. (PG&E-MCE Joint Rate Comparisons, accessed September 2104.) Make Improvements Beyond Title 24 Requirements - In general, Title 24 requires the design of building shells and building components to conserve energy. The standards are updated periodically to allow for consideration and possible incorporation of new energy efficiency technologies and methods.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROLOGY AND WATER QUALITY</td>
<td>Mitigation Measure IX - 1: As required by the Contra Costa County Clean Water Program and the San Francisco bay Regional Water Quality Control Board, the applicant shall prepare and implement a SWPPP for the construction of the project. Mitigation Measure IX - 2: For post-construction stormwater discharges, the project shall prepare and implement a C.3 Stormwater Control Plan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicant Planning and Building Services Department</td>
<td>Condition of grading and/or building permits approval; field verify implementation during grading and/or construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOISE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MITIGATION MONITORING AND REPORTING PROGRAM – ATLAS ROAD INDUSTRIAL BUILDING (STEELSCAPE) PROJECT

<table>
<thead>
<tr>
<th>Identified Impact</th>
<th>Related Mitigation Measure</th>
<th>MONITORING</th>
<th>VERIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Implementation Entity</td>
<td>Monitoring and Verification Entity</td>
</tr>
<tr>
<td>Impact of Construction Noise.</td>
<td>Mitigation Measure XII-1: The Project applicant shall implement technically and economically feasible measures construction noise control measures to reduce, as feasible, the noise levels generated by the use of construction equipment below the maximum noise level standards specified in Chapter 9.52.110 of the City of Richmond Municipal Code.</td>
<td>Applicant</td>
<td>Planning and Building Services Department</td>
</tr>
</tbody>
</table>

TRANSPORTATION AND TRAFFIC

<table>
<thead>
<tr>
<th>Identified Impact</th>
<th>Related Mitigation Measure</th>
<th>MONITORING</th>
<th>VERIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflict with Congestions Management Program.</td>
<td>Mitigation Measure XIV - 1: The project applicant shall coordinate with other businesses within the Pinole Business Park to jointly develop a Transportation Demand Management program (TDM) to facilitate shuttle service, offer alternative work schedules, and encourage carpooling and alternative transportation modes such as bicycles and public transit. A TDM program that utilized a combination of the proposed methods for reducing employee traffic would reduce the proposed project site traffic by 25% would minimize the project impact to a less than significant level. Mitigation Measure XIV - 2: The project applicant shall register with 511ContraCosta.org to receive ongoing information about transportation alternatives and incentives for the employers and employees. TDM (Transportation Demand Management) programs are designed to reduce traffic congestion fuel consumption and air pollution. It is recommended that the project sponsor for the Atlas Road Warehouse/Distribution Center coordinate with other employers at the Pinole Business Park to jointly develop and run the TDM program for the benefit of the entire business park. A TDM program for the proposed Atlas Road Warehouse/Distribution Center could include the following strategies: Transportation Coordinator. Designate a</td>
<td>Applicant</td>
<td>Planning and Building Services Department</td>
</tr>
</tbody>
</table>

Comments and Responses
ATLAS ROAD INDUSTRIAL BUILDING (STEELSCAPE) PROJECT

A-5
<table>
<thead>
<tr>
<th>Identified Impact</th>
<th>Related Mitigation Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation coordinator on the site to provide trip planning and assistance to commuters. The presence of an on-site coordinator can make it easier to obtain information about alternatives to single-occupancy vehicle commutes.</td>
<td></td>
</tr>
</tbody>
</table>

On-Site Transit Information and Pass Sales. Providing transit information on-site can serve to encourage people to use transit. Convenient purchase of transit passes may also facilitate the use of transit. In addition, on-site sales could include discounts for transit passes.

Rideshare Matching Services. Rideshare matching services put compatible commuters in touch with one another to enable carpooling. Employers can facilitate formation of ridesharing arrangements by employees in a number of ways, ranging from simple in-house employee match listings to computerized matching programs. These services may be unique to the given employer or can pool matching candidates from a larger area ranging from multiple employers in a building or complex to large regional matching systems.

Guaranteed Ride Home. Guaranteed ride home programs provide backup transportation to employees who rideshare or use transit if they need to return home suddenly for an emergency or if they must work late and therefore cannot connect with the mode they used to travel to the site on that day. Generally, these programs provide vouchers for the person to travel home by taxi, although some employers permit use of company vehicles as well.

Preferential Parking. Employers may set aside reserved parking spaces as an incentive to carpool or vanpool. This is a non-monetary benefit that can be an important incentive if parking is tight or if the parking lot is large and the reserved spaces are near the building entrance. Reserved spaces may be unique to the given employer or can pool candidates from a larger area ranging from multiple employers in a building or complex to large regional matching systems.
also be sheltered versus outdoors, lessening the impact of severe weather.

Bicycle Storage, Lockers, and Changing Facilities. Changing facilities and showers and secure bicycle parking are key features for an employer or institution interested in encouraging bicycle use. Such facilities may be combined with an exercise facility and may encourage healthy habits.

Shuttle Bus Services. Some employers choose to operate shuttle bus services to provide easy connections with nearby rapid transit services or other important facilities. Shuttle services may be an individual employer effort or a collective effort of a few sites and employers. In some instances, shuttles are also used for local circulation during the midday, lessening the need to bring a personal vehicle to the job site.

Transit Subsidies. Employers can reduce the cost of taking transit by offering prepaid or discounted transit passes to employees who agree to commute by transit. This benefit can vary from a modest share of the actual cost to full absorption of the cost.

Flexible Work Hours. Flexible work hours are programs allowing employees a degree of freedom in choosing their starting and ending times.

Impact of Project Construction and Operation, on Landfill Capacity.

Mitigation Measure XVI-1: Recycling Plan for Construction
Prior to the initiation of project construction, the project sponsor shall prepare a recycling plan to cover all phases of project construction. The recycling plan shall identify a strategy for handling all waste materials that will be generated during construction, in order to divert a minimum of 50 percent by weight. The project sponsor shall provide a summary report of the diversion to the

<table>
<thead>
<tr>
<th>Identified Impact</th>
<th>Related Mitigation Measure</th>
<th>MONITORING</th>
<th>VERIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Implementation Entity</td>
<td>Monitoring and Verification Entity</td>
</tr>
</tbody>
</table>

Applicant | Planning and Building Services Department | Mitigation Measure XVI-1: Condition of grading and building permit approval; field verify implementation during grading and construction; summary report prior to issuance of certificate of occupancy

Comments and Responses
ATLAS ROAD INDUSTRIAL BUILDING (STEELSCAPE) PROJECT
<table>
<thead>
<tr>
<th>Identified Impact</th>
<th>Related Mitigation Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>City.</td>
<td>Mitigation Measure XVI-2: Recycling Spaces within Office Space</td>
</tr>
<tr>
<td></td>
<td>The project sponsor shall provide space within the office space sufficient to conveniently accommodate standard recycling containers for the collection and storage of separated recyclable materials, including glass, paper, plastic, and tin/aluminum cans.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MONITORING</th>
<th>VERIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Entity</td>
<td>Monitoring and Verification Entity</td>
</tr>
<tr>
<td></td>
<td>Mitigation Measure XVI-2: Condition of building permit approval or issuance of certificate of occupancy</td>
</tr>
</tbody>
</table>